

Syllabus Course description

Course title	Fluid Machines Engineering		
Course code	45527		
Scientific sector	ING-IND/08 "Fluid Machinery"		
Degree	Master Energy Engineering		
Semester	1		
Year	1		
Academic year	2025/2026		
Credits	9		
Modular	No		

Total lecturing hours	90	
Total lab hours		
Total exercise hours		
Attendance	Recommended	
Prerequisites	Fluid Machines, Thermodynamics, Mechanics	
Course page		
	energy-engineering/	

community and small-scale plants.

Lecturer	Prof. Lorenzo Battisti	
	Dr. Lorenzo Tieghi	
Scientific sector of the lecturer	ING/IND-08	
Teaching language	English	
Office hours		
Teaching assistant <i>(if any)</i>	-	
Office hours	-	
List of topics covered	The course will cover the following topics: 1. Introduction	
	a. Essentials of fluid Machines and Energy systems	
	i. Elements of fluid dynamics	
	:	

	ii.	Elements of Fluid Machinery
	iii.	Elements of Energy systems
b.	Introd	uction to renewable energy
2. Fluid n	nachine	s for renewable energy
a.	Solar F	Power
	i.	Solar Resource
	ii.	Solar photovoltaic
	iii.	Concentrated and thermodynamic solar
	iv.	Utility and community scale
b.	Hydro	Power
	i.	Hydro Resource
	ii.	Mini-hydro
	iii.	Reversible turbines, PATs and variable speed hydro-turbines
	iv.	Utility and community scale
	۷.	Diagnostics and fault detection
с.	Wind F	Power
	i.	Wind resource and Terrain
	ii.	Horizontal and vertical axis wind turbines
	iii.	Utility and community scale
	iv.	Diagnostics and fault detection
d.	Waste	Heat and Water
	i.	Waste Heat
	ii.	Waste Water
e.	Storag	es
	i.	Types of storage
	ii.	P2X
	iii.	Hydrogen Applications
	iv.	Utility and community scale
f.	Grid M	anagement & Economics

	i. Smart Grids			
	ii. Economic figures: LCA, ELCA, PBP, LCOE			
	For each of the technologies presented in the course, the tools needed for the performance evaluation (power, work, efficiency,) will be defined. For some of the proposed technologies, a techno-economic analysis will be carried out as well.			
Teaching format				
Learning outcomes	 During the course, the student will gain knowledge about: 1. Key energy production, storage, transmission and utilisation technologies, including their cost and sustainability aspects over their life cycle 2. How to evaluate the technical characteristics and resources of some of the major renewable power sources and the performance of energy systems and machines related. 3. Develop preliminary design and dimensioning for wind, solar, hydro and hydrogen systems and perform preliminary technology assessment for unconventional energy resources (e.g., Waste Heat) 			
Assessment	Written/Oral Exam and exercise report			
Assessment language	English			
Evaluation criteria and criteria for awarding marks	Oral exam performance and exercises reports assignments performance will be equally weighted for course final grade.			
Required readings	Notos of the source			
Required reduings	Notes of the course			

Required readings	Notes of the course		
Supplementary readings	• Twidell, John, and Tony Weir. Renewable energy		
	resources. Routledge, 2015.		
	• Supplementary in-depth research material		
	suggested throughout the course		