COURSE DESCRIPTION – ACADEMIC YEAR 2025/2026 | Course title | Laboratory of Energy Efficiency in Wood Production and Final | |-------------------|--| | | use | | Course code | 42627 | | Scientific sector | ND | | Degree | Bachelor in Wood Engineering (L-P03) | | Semester | 1 | | Year | 3 | | Credits | 6 | | Modular | No | | Total lecturing hours | 20 | |-----------------------|---| | Total exercise hours | - | | Attendance | Strongly recommended | | Prerequisites | none | | Course page | https://www.unibz.it/en/faculties/engineering/bachelor-wood-technology/ Microsoft Teams Community (the professor will provide the link during the first lectures). | | Specific educational | The present laboratory deals with the practical aspects of energy | |----------------------|---| | objectives | efficiency with a special focus on the wood engineering sector. | | | The course consists of 20 hours of practical activities carried out | The course consists of 20 hours of practical activities carried out mainly through laboratory activities consisting in the: - Analysis the energy efficiency of processes involved thermochemical conversion of wood. - Characterization of wood-based biomass through laboratory analysis of properties such as moisture content, calorific value, and elemental composition. - Investigation of the thermo-chemical conversion processes (combustion, pyrolysis, gasification) through laboratory experiments. - Understanding the performance and efficiency of real biomass energy systems through visits to full-scale facilities/plants. - Development of technical skills in operating laboratory instruments and interpreting results for biomass energy applications. | Lecturer | Maja DANOVSKA | |-------------------------------|------------------------| | Contact | maja.danovska@unitn.it | | Scientific sector of lecturer | ING-IND/10 | | Teaching language | English | | Office hours | Arranged beforehand by email | |------------------------------|---| | Lecturing Assistant (if any) | - | | Contact LA | - | | Office hours LA | - | | List of topics | The laboratory course will cover the following topics: | | | Energy Efficiency in Thermo-Chemical Conversion of Wood. Characterization of Wood-Based Biomass. Thermo-Chemical Conversion Processes. Performance and Efficiency of Real Biomass Energy Systems. Laboratory Instrumentation and Data Interpretation. | | Teaching format | Practical lecture mainly inside the laboratory. Teaching material and additional materials will be provided during the semester. | | | semester. | |-------------------|--| | | | | Learning outcomes | The learning outcomes need to refer to the Dublin Descriptors: | | | 1. Knowledge and Understanding | | | Demonstrate comprehensive knowledge of the principles of
energy efficiency, thermo-chemical conversion processes,
and sustainability within the wood industry and biomass
energy systems. | | | 2. Applying Knowledge and Understanding | | | Apply theoretical and practical knowledge to analyze and
solve problems related to energy efficiency in wood biomass
conversion and to design or propose improvement projects
for energy systems. | | | 3. Making Judgements | | | Exercise autonomous judgement in evaluating energy
scenarios and performance of biomass conversion systems;
critically assess data from laboratory experiments and real
facilities to recommend effective energy efficiency strategies
in the wood sector. | | | 4. Communication Skills | | | Effectively communicate technical concepts, experimental
results, and improvement proposals both verbally and in
writing, including the clear presentation of numerical
analyses related to energy systems in wood production and
biomass conversion. | | | 5. Ability to Learn | | Develop lifelong learning skills to acquire advanced
knowledge and practical tools in energy efficiency,
sustainability, and circular economy principles applicable not
only to the wood industry but also to broader industrial and
environmental contexts. | |--| | | | Assessment | No exam is required. | |---|--| | | Students are either marked Passed or Failed. | | | Attendance is strongly recommended, even if it is not mandatory. | | Assessment language | English | | Assessment Typology | Monocratic | | Evaluation criteria and criteria for awarding marks | - | | Required readings | Çengel, Y. A., & Boles, M. A. (2021). Thermodynamics: An engineering approach (9th ed.). McGraw-Hill Education. | |------------------------|--| | | Çengel, Y. A., & Ghajar, A. J. (2020). Heat and mass transfer: Fundamentals and applications (6th ed.). McGraw-Hill Education. | | Supplementary readings | Learning material will be provided by the professor during the course. | | Software used | In case, information will be provided at the beginning of the course. |