

Syllabus Course description

Course title	Applied Energetics
Course code	45545
Scientific sector	ING-IND/10
Degree	Master Energy Engineering
Semester	I
Year	1
Academic year	2025/26
Credits	6
Modular	No

Total lecturing hours	36
Total lab hours	
Total exercise hours	24
Attendance	Not mandatory
Prerequisites	None
Course page	https://www.unibz.it/en/faculties/engineering/master-
	energy-engineering/

Specific educational objectives	The Applied Energetics course is a core teaching in the context of the Master in Energy Engineering and, specifically, it deals with the fundamentals of applied engineering thermodynamics and heat transfer and energy resources and systems. The course consists of two parts.
	The first part covers topics related to the fundamentals of thermodynamics (First and Second Law of Thermodynamics), Heat Transfer, Real Working Fluids, Psychrometrics, Heat Exchanger, Thermodynamic Cycles/ Heat Pumps. Based on the deepened understanding of the concepts of thermodynamics and heat transfer, students are introduced to numerical concepts.
	The second part introduces the main energy resources, the global energy mix, different energy scenarios and energy market having a look at the most reliable bibliographic sources for retrieving these data. Nuclear energy systems are then thoroughly presented. In the last part of the course, an overview on different techniques for analyzing energy systems and specifically nuclear power plant is proposed, considering the economical (different energy economics indicator), the environmental (LCA analysis) and the technical (exergy analysis) point of view, combined with the heat and mass transfer analysis presented in the first part of the course.

Freie Universität Bozen

Libera Università di Bolzano Università Liedia de Bulsan

Lecturers	Prof. Ochs Fabian Ernst Dr. Stefano Piazzi		
Scientific sector of the lecturer	ING-IND/10		
Teaching language	English		
Office hours	Appointment by email		
Teaching assistant (if any)			
Office hours	Mondays to Thursdays, by appointment		
List of topics covered	 The first part of the course will cover the following topics: Repetition of basic thermodynamics concepts, First and, Second Law, material properties Heat transfer (conduction, convection, radiation) Mass transfer Components of energy systems (heat exchanger, cooling tower, heat pumps) 		
	 The second part of the course is intended to give the students an overview of the different energy systems with a focus nuclear energy and different analysis techniques. The following topics will be covered: Energy resources and scenarios Energy market Nuclear energy systems Economic analysis of energy systems Environmental analysis of energy systems Exergy analysis of energy systems 		
Teaching format	The course consists of lectures in which the topics are presented by the professor. There are also classes (exercises) that will give practical examples of the application of theoretical topics. Course topics will be presented on the blackboard and using electronic slides. Teaching material and additional materials will be provided by the Professor during the semester.		

Learning outcomes	Intended Learning Outcomes (ILO)
	 Knowledge and understanding Students should acquire the knowledge and the understanding of: Applied thermodynamics and heat and mass transfer, with/without phase change. Knowledge of key factors for different thermal devices and systems, in particular, heat exchangers and heat pumps. Energy resources and energy systems Energy systems analysis

	 4. The ab thermoor (space exercises calculat as well example 5. The al different 6. Autonor means analytic systems <u>Making judgem</u> 6. Autonor means analytic systems <u>Communication</u> 7. the abi concept and ora 8. the abi describe <u>Ability to learn</u> 9. Capabili transfer 	ility to a dynamic heating e part ion metil as the son the bility to t perspe mous ju of the al appro s. hity to c s acquir lity to c e the top ity of au	d understanding analyze the techn problems of diff surfaces, heat provides instru- nods for thermod e calculation of e whiteboard and y analyze energy ctives. udgement will b knowledge of bas baches applied to orrectly and prop- red in the course use the proper te- nics covered during tonomous study of mena and mecha and systems.	erent appliances pumps). The uction on the ynamic problems various explicit with computers. r systems from e enhanced by sic concepts and o thermodynamic perly present the both in written echnical terms to g the course
Assessment	The student is asked to produce project work on the design of an energy system presented during the course; this part of the assessment evaluates the ability of the student to apply the topics of the course in actual contexts, the comprehension of the theoretical concepts and the ability to make judgments.			
	Form	%	Length /duration	ILOs assessed
	Project work presentation	100%	Presentation and discussion (30 minutes)	1,3,4,5,6,7,8,9
Assessment language	English			
Evaluation criteria and criteria for awarding marks	Students regularly enrolled in the 1st year of the Master in Energy Engineering are eligible for the attendance of the lessons and the exam. Other exceptional cases have to be discussed with the Professor.			
			e presented in fro and will be evalua	

 different criteria: difficulty of the chosen solution details of the analysis communication skills and master of the technical language
--

Required readings	Slides of the course
Supplementary readings	Müller, I., Müller, W. 2009, Fundamentals of Thermodynamics and Applications: With with Historical Annotations and Many Citations from Avogadro to Zermelo, Springer Verlag
	VDI Wärmeatlas, Springer Verlag
	Nellis, G., Klein, S., Heat Transfer, 2008 Cambridge University Press
	Baehr, H.D., Kabelac, St. 2005, Thermodynamik, Springer Verlag
	P.K. Nag, 2005, Engineering Thermodynamics, Tata McGraw-Hill Education