

Syllabus Course description

Course title	Automatic Control
Course code	47511
Scientific sector	IINF-04/A Automatica
Degree	Master in Industrial Mechanical Engineering
Semester	I
Year	I
Academic Year	2025-2026
Credits	5
Modular	No

Total lecturing hours	28
Total exercise hours	18
Attendance	Attendance at lectures is strongly recommended. Attendance at exercise sessions is required.
Prerequisites	none
Course page	https://www.unibz.it/en/faculties/engineering/master- industrial-mechanical-engineering/course- offering/?academicYear=2025

Specific educational objectives	The course provides an introduction to the fundamentals of control theory, at an introductory/intermediate level. Topics covered include: Laplace Transform, Root Locus, and State Space Techniques. The course is aimed at beginning graduate students and focuses on building understanding and intuition. Examples and exercises that
	use Matlab and Simulink will be given.

Lecturer	Prof. Karl von Ellenrieder - Facoltà di Ingegneria Office: NOI B1.4.23 Tel.: +39 0471 017172 E-mail: karl.vonellenrieder@unibz.it				
Scientific sector of the lecturer	IINF-04/A - Automatica				
Teaching language	English				
Office hours	As listed on Cockpit or by appointment				
Teaching assistant (if any)	N/A				
Office hours	As listed on Cockpit or by appointment				
List of topics covered	The course covers the following topics: 1. Introduction a. Block diagrams b. Linear stability c. Effects of feedback on stability				

	Classical Control a. root locus – fundamental ideas and design approach		
	3. State Space Control		
Teaching format	Classroom lectures and exercises		

	2 Chata Canana Cambual				
	3. State Space Control				
Teaching format	Classroom lectures and exercises				
Learning outcomes (ILOs)	Knowledge and understanding				
	 Applying basic feedback principles to a broad range of dynamic system models (such as those typically learned in the 1st cycle). Defining feedback loop requirements for improving system steady state response. Understanding conditions that guarantee closed loop system stability. How to design controllers via Root Locus, and State Space Techniques. 				
	Applying knowledge and understanding				
	5. Analyzing, developing and presenting control systems for applications that span multiple disciplines through exercises, which complement the lectures.				
	Making judgements				
	6. On the choice of analytical and numerical tools to use in the exercises. This may require you to integrate knowledge, handle complexity, and formulate judgements with incomplete data.				
	Communication skills				
	7. In-class exercises will require you justify your solutions/conclusions concisely (in clear and simple language).				
	<u>Learning Skills</u>				
	8. Students will be required to develop a proficiency in Matlab and Simulink with a few in-class examples, but mostly on their own. This is intended to help students develop the ability to study in a manner that is largely self-directed or autonomous.				

Assessment	Formative assessment				
	Form	Length /duration		ILOs assessed	
	Exercises	20 h	ours total	1-8	
	Summative assessment				
	Form	%	Length /duration	ILOs assessed	
	Exercises	15		1-8	
	Final Exam	85	4 hours	1-6	
Assessment language	English				
Evaluation criteria and criteria for awarding marks	In-Class Exercises: Completeness and correctness of answers; level of understanding				
	Written Final Exam: Completeness and correctness of answers.				
	Students are required to receive an overall grade of greater than 60/100 points in order to pass the course.				
Required readings	Lacture notes	and eve	arcises will be availab	ale on the UniB7	
required readings	Lecture notes and exercises will be available on the UniBZ Open Learning Environment (OLE)				
Supplementary readings	Additional books and articles may be recommended by the instructor during the course.				