

Syllabus Course description

Course title	Dynamics of Mechanical Systems			
Course code	47561			
Scientific sector	ING-IND/13			
Degree	Master in Industrial Mechanical Engineering			
Semester	2			
Year	1			
Academic year	2025/2026			
Credits	5			
Modular	no			

Total lecturing hours	28		
Total lab and exercise hours	18		
Attendance	Not mandatory but strongly recommended		
Recommended preliminary	Fundamentals of mechanics and mathematics learned in		
knowledge	bachelor's degree studies of mechanical engineering		
Connections with other	Connection with the courses of mechanics of machines		
courses	and of structures. Connection with the theory of automatic		
	control		
Course page	https://www.unibz.it/en/faculties/engineering/master-		
	industrial-mechanical-engineering/course-		
	offering/?academicYear=2025		

Specific educational objectives	Understanding and knowledge of the fundamentals for both the theoretical as well as the experimental sides of mechanical vibrations. This includes the mathematical modeling of dynamical problems, the solving of these derived mathematical models and understanding of the results. Furthers, the students will gain practical experience of mechanical vibrations in a laboratory environment.
	of mechanical vibrations in a laboratory environment.

Lecturers	Dr. Veit Gufler
Scientific sector of the	ING-IND/13
lecturers	
Teaching language	English
Office hours	15
Teaching assistant (if any)	-
Office hours	-

List of topics covered	 Dynamics of vibrating systems with one degree of freedom: Modeling Free response Harmonic excitation and frequency response Forced response to impulse, step forces Response to base excitation and isolation Dynamics of vibrating systems with more degree of freedom Modeling Modal analysis Forced response. Continuous systems Basic models and relations Laboratory experiences Introduction to data acquisition and sensors for dynamic measurements Numerical and experimental applications
Professional applications of the covered topics	Engineering professions involving the design, the optimization and the monitoring of machines and structures.
Teaching format	Frontal lectures, hand calculation exercises, computer exercises, laboratory exercises.

Learning outcomes (ILO)	The learning outcomes need to refer to the Dublin				
	Descriptors:				
	1. Knowledge and understanding:				
	Knowledge and understanding of the fundamentals of vibration mechanics.				
	2. Applying Knowledge and understanding:				
	Applying knowledge and understanding to analyze				
	dynamical components, structures, and systems.				
	3. Making judgments:				
	The structural mechanical design under consideration of				
	dynamical considerations including vibrations requires				
	understanding and ability to make judgments based on				
	theory and experiments.				
	4. Communication skills:				
	Communication skills to convey and transfer understanding				
	of mechanical vibrations.				

Assessment	Communication skills to explain results of dynamical analysis and their consequences to structural mechanical design. 5. Learning skills Learning skills to independently study the specific fields of mechanical vibrations for applications beyond this lecture. Formative assessment				
	Form	class During the course		ILOs assessed	
	In-class exercises			1, 2, 3, 4	
	Form Written exam	% 100 %	Length /duration 2 hours	ILOs assessed 1, 2, 3, 4	
Assessment language	English				
Evaluation criteria and criteria for awarding marks	The written exam incudes numerical exercises, theoretical questions, questions related to the laboratory activities (no books or own notes are allowed during the exams). Exercises and questions will show ability to solve problems of mechanical vibrations as well as knowledge-based questions to show understanding of the material.				
Required readings	 Notes taken during lecture. Notes written by the teacher during the lessons, that will be available in the online repository 				
Supplementary readings	"Mechanical Vibrations Theory and applications" S. GRAHAM KELLY				