

Fakultät für Ingenieurwesen **Unibz** Facoltà di Ingegneria Faculty of Engineering

SYLLABUS COURSE DESCRIPTION YEAR 2025/26

COURSE TITLE	Linear Algebra
COURSE CODE	76238
SCIENTIFIC SECTOR	MATH-02/A
DEGREE	Bachelor in Computer Science
SEMESTER	1st
YEAR	1st
CREDITS	6

TOTAL LECTURING HOURS	40
TOTAL LAB HOURS	20
ATTENDANCE	Attendance is not compulsory, but non-attending students must contact the lecturer to agree on independent study modalities.
PREREQUISITES	There are no prerequisites for this course.
COURSE PAGE	The course page will be made available on the Microsoft Teams class for this course or on https://ole.unibz.it, as communicated by the lecturer. Additional materials can also be found in the university's Reserve Collection at https://www.unibz.it/en/services/library/new-rc/.

SPECIFIC EDUCATIONAL OBJECTIVES	This course belongs to the type "Attività formative di base" and the subject area is "Matematica-Fisica".
	The aim of this course is to present a rather comprehensive treatment of linear algebra and its applications, giving a general overview of the field. It covers vector and matrix theory to some degree of mathematical logic and rigor, emphasizing topics useful in other disciplines such as solving linear equations and computing determinants and eigenvalues of matrices. The course also provides practice in using linear algebra to think about problems in computer science, and in actually using linear algebra computations to address these problems.

LECTURER	Bruno Carpentieri (bruno.carpentieri@unibz.it)
SCIENTIFIC SECTOR	MATH-05/A

Fakultät für Ingenieurwesen Facoltà di Ingegneria Faculty of Engineering

English

ASSESSMENT

OF THE LECTURER	
TEACHING LANGUAGE	English
OFFICE HOURS	Office BZ B1 5.23, Tuesdays 16:00–18:00, by appointment via email
TEACHING ASSISTANTS	1
OFFICE HOURS	1
LIST OF TOPICS COVERED	 Background on complex numbers, trigonometry and polynominals Vectors and matrices Linear Systems Vector spaces Linear operators Spectral analysis
TEACHING FORMAT	The course includes frontal lectures and exercises.
LEARNING OUTCOMES	 Knowledge and Understanding D1.1: Have a solid knowledge of mathematical analysis, algebra, numerical calculus, discrete mathematics and elementary notion of logic that are in support of computer science
	Applying knowledge and understanding
	 D2.1: Be able to use the tools of mathematics and logic to solve problems.
	Ability to make judgments
	 D3.2: Be able to work autonomously according to the own level of knowledge and understanding.
	Communication skills
	 D4.1: Be able to use one of the three languages English, Italian and German, and be able to use technical terms and communication appropriately.
	Learning skills
	 D5.1: Have developed learning capabilities to pursue further studies with a high degree of autonomy.
ASSESSMENT	The written exam will include verification questions, transfer-of-knowledge questions, and exercises. The aim is to assess the extent to which students have acquired knowledge and understanding, are able to apply that knowledge, and can demonstrate critical judgment. The same assessment criteria apply to both attending and non-attending students.

Fakultät für Ingenieurwesen **Unibz** Facoltà di Ingegneria Faculty of Engineering

LANGUAGE	
EVALUATION CRITERIA AND CRITERIA FOR AWARDING MARKS	The final written exam accounts for 100% of the grade and covers the entire program. Exam questions will be assessed based on correctness, clarity, quality of argumentation, and problem-solving ability. The same evaluation criteria apply to both attending and non-attending students.
REQUIRED READINGS	 Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley, 4th edition, February 2009. ISBN 978-0-9802327-1-4. Gilbert Strang. Algebra lineare. Apogeo Education, 1st edition, 2008. ISBN 978-88-387-8607-5. Carl D. Meyer. Matrix analysis and applied linear algebra. SIAM: Society for Industrial and Applied Mathematics, Philadelphia, May 2010. ISBN 978-0-89871-454-8.
SUPPLEMENTARY READINGS	 Philip N. Klein. Coding the Matrix: Linear Algebra through Applications to Computer Science. Newtonian Press, Newton, Mass., 1st edition, September 2013. ISBN 978-0-615-88099-0.
SOFTWARE USED	If the use of specific software is required, it will be communicated during class by the lecturer.