

1/5

SYLLABUS
COURSE DESCRIPTION YEAR 2025/26

COURSE TITLE Software Systems Engineering

COURSE CODE 76265

SCIENTIFIC SECTOR INFO-01/A

DEGREE Bachelor in Computer Science

SEMESTER 2nd

YEAR 2nd

CREDITS 12

MODULAR Yes

TOTAL LECTURING
HOURS

70

TOTAL LAB HOURS 50

ATTENDANCE Attendance is not compulsory. Non-attending students have to contact the

lecturer at the start of the course to agree on the modalities of the
independent study.

PREREQUISITES There are no prerequisites for this course.

COURSE PAGE The Teams class for each module

SPECIFIC

EDUCATIONAL
OBJECTIVES

This course belongs to the type "Attività formativa caratterizzante" and the

subject area is "Informatica".

The objective of the Software Systems Architecture Module is to provide
students with a solid understanding of the role of software architecture

within the software development lifecycle. Students will learn to design

architectures using established patterns and best practices, gain an
overview of various architectural styles and emerging trends, evaluate and

balance trade-offs related to quality attributes, and apply different
architectural approaches to the development of high-quality software.

Tools and Techniques for Software Testing is designed to equip students
with the ability to select, use, customize, and deploy software testing tools

and techniques. It also enables them to configure and integrate these tools
to support testing activities throughout the collaborative software

2/5

development process.

MODULE 1 Software Systems Architecture

MODULE CODE 76265A

MODULE SCIENTIFIC

SECTOR

IINF-05/A

CREDITS 6

LECTURER Eduardo Martins Guerra (eduardo.martinsguerra@unibz.it)

SCIENTIFIC SECTOR
OF THE LECTURER

INFO-01/A

TEACHING

LANGUAGE

English

OFFICE HOURS Office BZ B1 4.34, Thursdays 14:00–16:00, by appointment via email

TEACHING
ASSISTANTS

/

OFFICE HOURS /

LIST OF TOPICS
COVERED

– Software and systems architecture principles
– Software architecture design process

– Architectural components and frameworks
– Approaches for architectural partitioning

– Architectural patterns and styles

– Integrating AI Components into Architectural Designs

TEACHING FORMAT The course includes frontal lectures and lab exercises.

MODULE 2 Tools and Techniques for Software Testing

MODULE CODE 76265B

MODULE SCIENTIFIC
SECTOR

INFO-01/A

CREDITS 6

LECTURER Barbara Russo (barbara.russo@unibz.it)

SCIENTIFIC SECTOR

OF THE LECTURER

INFO-01/A

3/5

TEACHING

LANGUAGE

Italian

OFFICE HOURS Office BZ B1 4.20, Tuesdays 14:00–16:00, by appointment via email

TEACHING

ASSISTANTS

/

OFFICE HOURS /

LIST OF TOPICS

COVERED

– Verification and validation

– Techniques for black-box and white-box texting
– Techniques and tools for test automation

– Integration and regression testing
– Web testing

– AI for test case generation

TEACHING FORMAT The course includes frontal lectures and lab exercises.

LEARNING

OUTCOMES
Knowledge and Understanding

– D1.8 To have a thorough knowledge of the main fundamentals techniques
and methods of software design, development and maintenance

Applying knowledge and understanding

– D2.5 Be able to apply the own knowledge to the , design, development
and testing of information systems which satisfy given requirements

– D2.7 Be able to conduct simple experiments about information systems
by collecting measures about the behaviour of the system.

– D2.10 Be able to solve typical problems in computer science based on

software engineering methodologies, such as the definition of
requirements, the of possible methods for a solution, the selection of the

most appropriate methods and tools as well as their application
– D2.11 Be able to evaluate the quality of information systems and to

identify critical aspects.

Ability to make judgments

– D3.1 Be able to collect and interpret useful data and to judge information

systems and their applicability.
– D3.2 Be able to work autonomously according to the own level of

knowledge and understanding.
– D3.3 Be able to take the responsibility for development of projects or IT

consulting.

Communication skills

– D4.1 Be able to use one of the three languages English, Italian and

German, and be able to use technical terms and communication
appropriately.

– D4.3 Be able to negotiate with a customer for the definition of the pre-

requisites and features of information systems.

4/5

– D4.4 Be able to structure and write technical documentation.

Learning skills

– D5.1 Have developed learning capabilities to pursue further studies with
a high degree of autonomy.

– D5.2 Have acquired learning capabilities that enable to carry out project
activities in companies, public institutions or in distributed development

communities.

– D5.3 Be able to follow the fast technological evolution and to learn cutting
edge IT technologies and innovative aspects of last generation

information systems.

ASSESSMENT A final unified written exam will be performed with verification questions

from both modules. Each module will have the following additional
activities during the course:

Software Systems Architecture: Lab assessment is composed by
assignments that should be performed and delivered in each week.

Optional activities might worth extra points in the final module grade.

Tools and Techniques for Software Testing: Project work with assignments
done in groups

ASSESSMENT
LANGUAGE

English

EVALUATION

CRITERIA AND
CRITERIA FOR

AWARDING MARKS

The written exam evaluates the student's ability to master the course

terminology, assess tools and techniques in relation to their specific domain
of use and technical details, solve exercises, and clearly summarize

theoretical concepts. The assessment of project and lab work focuses on
timely completion of assignments, the delivery of functional solutions, and

the development or customization of high-quality software that meets the

specified requirements.

The final grade is calculated as the average of the grades obtained in each
module. For Software Systems Architecture, the grade is based on two

components: 50% from lab work and 50% from the module-specific

questions in the final written exam. Optional activities within the module
may provide extra credit. For Tools and Techniques for Software Testing,

the grade is composed of 80% from project work and 20% from the
relevant questions in the written exam. Completion and positive evaluation

of the project is a prerequisite for accessing the written exam.

For non-attending students, module instructors may offer two options:

either complete lab assessments or projects under the same conditions as
attending students, or undergo an additional evaluation based on questions

related to lab or project content.

Students must pass both modules to pass the course. A positive grade in

5/5

one module remains valid for all three regular exam sessions within the

academic year.

REQUIRED

READINGS

– Robert Martin. Clean Architecture: A Craftsman's Guide to Software

Structure and Design. Pearson, London, England, 1st edition, September
2017. ISBN 978-0-13-449416-6.

– Mark Richards. Software Architecture Patterns. O'Reilly Media, Inc., 2015.
ISBN 978-1-4919-2540-9.

SUPPLEMENTARY

READINGS

– Len Bass, Paul Clements, and Rick Kazman. Software Architecture in

Practice. Addison-Wesley Professional, Harlow, 3rd edition, September
2012. ISBN 978-0-321-81573-6.

SOFTWARE USED – Java (https://openjdk.org)

– A Java IDE (e.g., https://eclipseide.org)
– Git (https://git-scm.com)

– Maven (https://maven.apache.org)
– Issue trackers

– JaCoCo (https://www.eclemma.org/jacoco/)

– FindBugs (https://findbugs.sourceforge.net)
– JUnit 5 (https://junit.org)

– FitNesse (https://fitnesse.org)

