

Syllabus	
Course description	
Course title	Modelling Methods for Applied Physics
Course code	46013
Scientific sector	ING-IND/11 (09/C2)
Degree	PhD in Sustainable Energy and Technologies
Semester	2
Year	1
Academic year	2024/2025
Credits	3
Total lecturing hours	20
Specific educational	Learning objective of the course:
objectives	1. mastering the most important concepts about
	modelling physical systems
	2. developing simulation models based on the
	mathematical description of physical systems
	3. applying the concepts to case studies
	4. understanding potential and limitations of
	simulation for applications
Lecturer	Federica Morandi
Scientific sector of the	ING-IND/11 (09/C2)
	English
Office hours	Monday 16-18
List of topics covered	List of topics covered
	Modeling and simulating: Calculation vs.
	simulation. Model accuracy. Model validation.
	Model definition: Definition of model for physical
	woder definition. Definition of moder of physical
	systems. Analytical vs numerical solutions. Model
	remement and extension.
	Finite difference approaches: Solution of partial
	derivatives differential equations with finite
	difference approaches. Consistency, stability and
	convergence. First order schemes (forward

	backward). Second order schemes (central, Crank-Nicolson) <u>Applications</u> : Development of case studies.
	Examples from thermal and thermodynamic systems. Modelling of systems and solutions of control problems.
Tooching format	Loctures (blackboard and/or clides) and
	spreadsheet implementation.
Learning outcomes	(1) Knowledge and understanding
	- Modelling and simulation vs calculations
	- Derivation of models for physical systems
	- Numerical solutions of differential equations
	 (2) Applying Knowledge and understanding: Defining models for case studies Applying simulations to understand system behavior Calculating multiple performance aspects
	 (3) Making judgments: Comparing different modelling approaches Deciding the degree of accuracy required for the specific application Optimizing the design or behavior of a system using modelling approaches
	 (4) Communication skills: Using the appropriate technical vocabulary related to the topic Preparing a report representing and summarizing complex results and providing appropriate interpretation
	 (5) Learning skills: Decomposing a complex problem into subproblems Finding the analytical expression and the numerical solution Comparing different methods and sources

Freie Universität Bozen Unibz Libera Università di Bolzano Università Liedia de Bulsan

Evaluation criteria and	Marks are attributed according to the following
criteria for awarding marks	assessment aspects:
	- Synthesis ability to explain the fundamental
	aspects of the problem (0=nothing, 1=insufficient;
	2=sufficient; 3=full)
	- Analysis ability to describe details and specific
	formulas/models (0=nothing, 1=insufficient;
	2=sufficient; 3=full)
	- Application ability to implement the principles
	and formulas and to solve practical cases
	(0=nothing, 1=insufficient; 2=sufficient; 3=full)
	- Reporting ability to represent and summarize
	the main results and to provide an appropriate
	interpretation
Required readings	- Teaching material, handouts, booklets from the
	reserve collection
Supplementary readings	- Carl-Eric Hagentoft, 2001, Introduction to
	Building Physics, Professional Pub Service