

Syllabus Course description

Course title	Environmental Fluid Mechanics / Hydropower Plants		
Course code	45504		
Scientific sector	ICAR/01 (Module 1) "Hydraulics"		
	ICAR/02 (Module 2)		
	"Hydraulic and Marine Constructions and Hydrology"		
Degree	Master Energy Engineering		
Semester	1		
Year	1		
Academic year	2025/2026		
Credits	9		
Modular	yes		

Total lecturing hours	40 + 50			
Total lab and exercise hours				
Attendance	Not mandatory but recommended			
Recommended preliminary knowledge	Basic knowledge of first-level courses of hydrology and hydraulics is required to successfully attend the course. Students with a background in industrial engineering where such topics were not available, or limited, will have to fill the knowledge gap by means of autonomous study following the recommendations and suggestions of the instructors			
Connections with other courses	A strict connection with the course of Fluid Machines Engineering and Electrical System Engineering, for the understanding and design of water turbines, electrical energy production and transport. The course is preparatory to the course Hydro Power System, in which Run of the River Hydro power Plants will be in deep analyzed.			
Course page	https://www.unibz.it/en/faculties/engineering/master- energy-engineering/			
Specific educational objectives	The course aims at providing basic notions to understand the behavior of hydraulic infrastructures used for hydroelectric energy production, the dynamics of transport processes in rivers, streams and open-channel flows, and to compute mass balances of available water resources.			

Module 1	Environmental Fluid Mechanics				
Lecturer	Prof. Guido Zolezzi				
Scientific sector of the lecturer	ICAR/01				
Teaching language	English				
Office hours	Upon appointment				
Teaching assistant <i>(if any)</i>	-				
Office hours	-				
List of topics covered	Hydraulics of open channel flows and transport processes in streams and rivers 1. Introduction				
	Review of basic hydraulic concepts: mass and momentum conservation (integral formulation), steady uniform flow in pipes, Bernoulli theorem.				
	Fundamental equations for open-channel flows: main concepts and assumptions in the derivation of the one- dimensional (cross section average) continuity and momentum equations (Saint Venant equations). Hierarchy of hydraulic models (from 3D local, instantaneous to 1D)				
	 2. One-dimensional open channel flows Flow resistance in turbulent flows; uniform flow model; channel design problem; stage-discharge curves in natural cross-sections. Steady-state water surface profiles gradually varied flows: subcritical and supercritical flows; boundary conditions, locations and type. Specific energy; hydraulic jump. Gradually varied flows: effect of variable geometry and variable discharge. Unsteady flows: flood waves, celerity of propagation, simplified models (kynematic model, parabolic model). Hysteresis in the stage-discharge rating curve. Hydropeaking waves. Numerical models for the simulation of open channel flows (HEC-RAS software). 				
	 3. Fluvial hydraulics and eco-hydraulics Basic concepts of river hydro-morphology. Sediment transport (bed load and suspended load); erosion and deposition processes. Implications for river morphological evolution. Environmental effects of hydropower production on river 				

	systems. The national and international regulatory framework. Methods to calculate ecological flows. Hydrological methods and hydraulic-habitat methods. Hydropeaking and related effects.
Professional applications of the covered topics	
Teaching format	The theory is presented by means of lectures in class. Examples of exercises supporting the theoretical aspects are proposed by the instructors during teaching hours. Further analyses, which include the solution of various types of exercises and problems, are left to the autonomous study of the students. In order to better understand the practical aspects taught in the course, one or more homework practical exercises will be assigned to the students. The homework will be done in small groups. The discussion of the results of the homework is one of the elements of the exam.

Module 2	Hydropower Plants			
Lecturers	Prof. Maurizio Righetti			
	Dr. Giuseppe Pisaturo			
Scientific sector of the lecturers	ICAR/02			
Teaching language	English			
Office hours	Upon appointment			
Teaching assistant <i>(if any)</i>	-			
Office hours	-			
List of topics covered	Hydrological modeling for hydropower systems and			
	analysis of the elements of HPP			
	II-1 Introduction (4 hours).			
	Principles of functioning of a Hydro power plant; classification and main components of a HPP. Pumped- storage HPPs. Hydrological curves, duration curves and their use for a reservoir or a RoR HPP design.			
	II-2 Basics of hydrology and hydrological modelling (8 hours)			
	The main components of the hydrological cycle; the water			
	balance (continuity equation); precipitation; floods and			
	droughts; the return time. The uses of water resources.			
	Acquisition of hydro-meteorological data. The main processes of the hydrological modules that constitute an			

	 hydrological model. Models for evapotranspiration, plant interception and infiltration, snow-glacial dissolution, infiltration. Full models: the kinematic model. Continuous hydrological models. Construction criteria of a hydrological model at the basin scale. Calibration and validation of models. II-3. Flow measurement (4 hours) Weirs, the method of area-velocity, the dilution method, measurement errors, and its influence on the flow rate scales.
	II-4. Plant design (34 hours) Hydroelectric plants with reservoir and run of the river plants (RoR), operations management for hydroelectric plants. Analysis of the functional elements constituting a hydroelectric plant: barrages and intakes (dams, sedimentation channels); headraces, channels and adduction tunnels; surge tanks; penstocks; turbines; alternators; regulators; tailrace. Classroom exercises: filtration under dams and dikes; Global stability of dams and dikes; siphoning; drainage of excavations. One exercise among: analysis of water hammer in a pressure pipe, mass oscillation analysis in a surge tank, Reservoir volume and production design.
Professional applications of the covered topics	The topics studied will allow the student to find employment in companies, public and private bodies and professional firms for the design, planning, construction and management of works and plants for hydroelectric production, for the management of environmental and energy resources.
Teaching format	The theory is presented by means of lectures in class. Examples of exercises supporting the theoretical aspects are proposed by the lecturers during teaching hours. Further analyses, which include the solution of various types of exercises and problems, are left to the autonomous study of the students. Observation of key open channel flow processes in the hydraulic laboratory is used to increase concept understanding. A one-day field visit to hydropower plants is usually organized within the course.

Learning outcomes	 Knowledge and understanding: 1. Recall the basics of pressurized flow and related energy balance 2. Understand the hydrodynamics and the main hydraulic processes of open-channel flows, including basics of sediment transport 3. Understand the hydrological cycle. 4. Understand the hydraulic design/sizing of the main
	components of a Hydro power Plant (such as: hydraulic equipment for production, control, outlet works).
	 Applying Knowledge and understanding: 5. Compute steady-state profiles of open-channel flows with variable geometry and discharge. 6. Carry out the main hydrological analyses necessary for the design of hydroelectric systems and simulation of their productivity. 7. Carry out the hydraulic design of the main components of an HPP
	 Making judgments: 8. Aanalyze the different compartments of a Reservoir Hydro Power Plant (HPP) and of a Runof-River HPP. 9. Estimate the hydrological and environmental alterations induced by the operation of hydroelectric power plants.
	Communication skills: 10. Learn specific terminology. 11. Be able to discuss with experts.
	Learning skills 12. Critical analysis and hydraulic design of HPP structures. 13. Group work.
Assessment	Oral exams and exercises/report The student is asked to produce a series of group exercises (homework) reports, on hydraulic problems and/or on the hydraulics of some comparments of an hydro powwer plant.

	This part of the student to app applications, the concepts and the The student is each module of questions to asset the course topic ability to transfer power plants.	ly the e ab also the o sess cs ar er th essn ses	ne to comp ility to aske cours the nd qu nese nent 15 c	pics of the prehension of prehension of prehension of ed to carry of se. The oral ea knowledge ar uestions design skills to cas skills to cas <u>gth/duration</u> c 60 min	cours of the nents. ut an xamir nd un gned e stu	oral exam for nation includes derstanding of to assess the
	Form	%		Length/dura	tion	ILOs
	Oral exam	70	%	questions (45 5, 6, 7, 9, 10, 11 6 Presentation 4, 6, 7,		assessed 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
	Exercises presentation	309	%			4, 6, 7, 8, 9, 10, 11,
Assessment language	English					
Evaluation criteria and criteria for awarding marks	The exam comprises two elements: a final oral discussion on the topics dealt with during the course (70%), and an individual presentation and discussion of the homework (30%). The discussion of both elements is contextual and occurs during the oral exam. The homework is developed by groups of maximum 3 students. Each group will write a written report presenting the work done in a clear and concise way. The report has to be sent to the instructors in pdf format by e-mail, at least one week before the date of the exam. Each student					
Required readings	is responsible of The student can the course. Suggested refer	sele	ect ar		ng wit	h the topics of

	in Civil Engineering, 1966. - H. Chanson, The Hydraulics of Open Channel Flow: An Introduction, Arnold, 1999. - AJ_Peterka, Hydraulic_design_of_stilling_basins - Pavel_Novak, Hydraulic_structures
Supplementary readings	