
 

Syllabus 

Course description 
 

Course title Agile Software Engineering 

Course code 76106 

Course title additional / 

Scientific sector INF/01 

Teaching language(s) English 

Degree course Master in Software Engineering 

Other degree courses 

(loaned) 
/ 

Lecturer(s) Prof. Xiaofeng Wang, xwang@unibz.it, room BZ B1 4.33 

Prof. Andrea Janes, ajanes@unibz.it, room BZ B1 4.24 

Teaching assistant(s) / 

Semester 1 

Course year 1 

CP 12 

Teaching hours 80 

Lab hours 40 

Individual study 60 

Planned office hours 36 

Contents summary The course belongs to the type “caratterizzanti – discipline informatiche”. 

Course content The course aims to equip students with both an agile mindset and 
practical professional skills essential for modern software engineering. It 

covers the foundations and core principles of agile software 
development, exploring various agile approaches and applying key 

engineering and project management practices in real-world contexts. 

Emphasis is placed on teamwork, agile collaboration techniques, and the 
challenges of scaling agile methods in distributed and large-scale 

projects. In parallel, the course introduces students to tools and 
techniques widely used in DevOps environments, including virtualization, 

containerization, microservice architectures, automation of the software 
lifecycle, continuous integration, deployment and delivery, as well as log, 

configuration, and system monitoring. Through this integrated approach, 

students gain a comprehensive understanding of contemporary software 

development practices. 

mailto:xwang@unibz.it
mailto:ajanes@unibz.it


 

Keywords Agility, DevOps, Sustainability, Quality 

Prerequisites / 

Propaedeutic courses / 

Teaching format The course combines interactive lectures with practical project work to 

provide both theoretical foundations and hands-on experience in agile 

software development. 

Mandatory attendance Attendance is not compulsory, but non-attending students have to 

contact the lecturer at the start of the course to agree on the modalities 

of the independent study. 

Specific educational 

objectives and learning 

outcomes 

Knowledge and understanding 

D1.5 know the fundamentals, techniques, and methods of design, 

customisation and implementation of software to support the automation 

of new-generation software systems for industrial production, company 

business, education, and society. 

D1.6 understand the elements of corporate and professional culture. 

 

Applying knowledge and understanding 

D2.2 know how to design and carry out empirical studies of software 
systems in order to acquire measurements of their behaviour and 

evaluate experimental hypotheses in different application fields, such as 

business, industry, education, or research. 

D2.4 ability to define an innovative technical solution to an application 
problem that respects technical, functional, and organisational constraints 

and requirements. 

 

Making judgements 

D3.2 ability to plan and re-plan a technical project activity and to carry it 

out within the defined deadlines and objectives. 

D3.3 ability to define work objectives compatible with the available time 

and resources. 

D3.4 ability to reconcile conflicting project objectives, find acceptable 

compromises within the limits of cost, resources, time, knowledge, or 
risk. D3.5 ability to work with broad autonomy, taking responsibility for 

projects and structures. 

 

Communication skills 

D4.3 ability to work and co-ordinate the work of a multi-disciplinary 
project team, to identify activities aimed at achieving the project 

objectives. 

D4.4 ability to prepare and deliver presentations with technical content in 

English for diverse audiences. 

D4.5 ability to interact and collaborate in the realisation of a project or 

research with peers and experts. 

 

Learning skills 

D5.2 ability to independently keep up to date with developments in the 



 

most important fields of information technology. 

D5.3 ability to extend incomplete knowledge with regard to the final 

objective of the project, in the context of a problem-solving activity. 

Specific educational 

objective and learning 

outcomes (additional 

information) 

/ 

Assessment The assessment for both courses in this module consists of two 

components: a project (50%) and an oral exam (50%). Attending 

students complete a team-based development project, while non-
attending students analyze an existing one. The oral exam evaluates 

individual theoretical understanding and the ability to discuss project 
outcomes. A passing project evaluation is required to access the oral 

exam, and both components must be passed to complete the module. A 

positively assessed project remains valid for three sessions. 

This assessment structure supports the learning outcomes of this course 

as follows. It contributes to the acquisition of knowledge and 
understanding (D1.5, D1.6) by engaging students in the application of 

software development techniques and fostering reflection on corporate 
and professional contexts. It enhances the ability to apply knowledge 

(D2.2, D2.4) by requiring the design and empirical evaluation of software 

solutions that respect technical and organizational constraints. The 
project work also develops judgment skills (D3.2–D3.5) as students plan, 

manage, and adapt project activities under real-world limitations while 
taking increasing responsibility for their work. Communication skills 

(D4.3–D4.5) are strengthened through teamwork, technical discussions, 
and oral presentations in English. Finally, the course promotes learning 

skills (D5.2, D5.3) by encouraging students to independently acquire new 

knowledge and address open problems throughout the project and oral 

examination. 

Evaluation criteria For both attending and non-attending students, the project work is 

evaluated based on the quality of the solution or analysis. For attending 
students, the quality of teamwork is also considered. The oral exam 

evaluates the ability to summarize, assess, and relate different topics, 

along with the clarity and precision of the responses. 

Required readings (See module descriptions) 

Supplementary readings (See module descriptions) 

Further information (See module descriptions) 

Sustainable Development 

Goals (SDGs) 

Decent work and economic growth; industry, innovation and 

infrastructure; responsible consumption and production 

Course module 
 

Course constituent title Agile Software Engineering M1 - Agile Processes and Practices 

Course code 76106A 

Scientific sector INF/01 



 

Teaching language(s) English 

Lecturer(s) Prof. Xiaofeng Wang, xwang@unibz.it, room BZ B1 4.33 

Teaching assistant(s) / 

Semester 1 

CP 6 

Responsible lecturer Prof. Xiaofeng Wang, xwang@unibz.it, room BZ B1 4.33 

Teaching hours 40 

Lab hours 20 

Individual study 90 

Planned office hours 18 

Contents summary • Origin and evolution of agile software development 

• Major agile frameworks and key agile practices 

• Scaling agile: distributed and/or large agile software development 

• People-centric and teamwork in agile software development 

• Continuous experimentation using agile approaches 

• AI-enabled agile processes 

Course content The Agile Software Development course aims to instill an agile mindset in 

future software engineers and enhance their ability to work effectively on 

software development projects using agile methods. The course focuses 
on understanding the foundations and core principles of agile software 

development, exploring various agile approaches, and applying key 
engineering and project management practices in real-world contexts. It 

also emphasizes improving teamwork through agile collaboration 

techniques and addresses how to scale agile development beyond its 

typical settings, including in distributed and large-scale projects. 

Teaching format The course combines interactive lectures with practical project work to 
provide both theoretical foundations and hands-on experience in agile 

software development. 

Required readings • Agile Manifesto: http://agilemanifesto.org/ 

• Agile Essentials on Agile Alliance website: 

https://www.agilealliance.org/agile-essentials/ 

• Modern Agile: https://modernagile.org/ 

• Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it 

Supplementary readings • Highsmith, Jim. Agile Software Development Ecosystems. Boston, 2002. 

• Research papers on agile software development, which will be distributed 

during the lectures 

 

mailto:xwang@unibz.it
mailto:xwang@unibz.it
http://agilemanifesto.org/
https://www.agilealliance.org/agile-essentials/
https://modernagile.org/


 

Course module 
 

Course constituent title Agile Software Engineering M2 - Continuous Integration and Delivery 

Course code 76106B 

Scientific sector INF/01 

Teaching language(s) English 

Lecturer(s) Prof. Andrea Janes, ajanes@unibz.it, room BZ B1 4.24 

Teaching assistant(s) / 

Semester 1 

CP 6 

Responsible lecturer Prof. Andrea Janes, ajanes@unibz.it, room BZ B1 4.24 

Teaching hours 40 

Lab hours 20 

Individual study 90 

Planned office hours 18 

Contents summary • Configuration Management 

• Containerization with Docker & Kubernetes  

• Applied Microservice-oriented Software Engineering  

• Monolith to Microservices Migration  

• Continuous Integration & Delivery Techniques  

• DevOps as a Software Development Paradigm 

Course content The course is designed to equip students with practical professional skills 

relevant to modern software engineering. It focuses on the application of 
development techniques and tools commonly used in DevOps 

environments, including virtualization and containerization, microservice 

architectures, automation of the software lifecycle, continuous 
integration, deployment and delivery, as well as log management, 

configuration management, and system monitoring. 

Teaching format The course combines interactive lectures with practical project work to 
provide both theoretical foundations and hands-on experience in agile 

software development. 

Required readings Lecture notes will be handed out during the course. 

Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it 

Supplementary readings • Robert C Martin: Clean Architecture: A Craftsman’s Guide to Software 

Structure and Design. Pearson (2017) 

• Vaughn Vernon: Domain-Driven Design Distilled. Addison-Wesley 

Professional (2016) 

mailto:ajanes@unibz.it
mailto:ajanes@unibz.it


 

 


