

Syllabus

Course description

Course title Software Design and Implementation

Course code 76105

Course title additional

Scientific sector INF/01

Teaching language(s) English

Degree course Master in Software Engineering

Other degree courses (loaned)

Lecturer(s) Prof. Dr. Claus Pahl,

Claus.Pahl@unibz.it

https://www.unibz.it/it/faculties/engineering/academic-

staff/person/36376-claus-pahl

Dr. Eduardo Martins Guerra,

eduardo.guerra@unibz.it

https://www.unibz.it/it/faculties/engineering/academic-

staff/person/43879-eduardo-martins-guerra

Teaching assistant(s)

Semester 1

Course year 1

CP 12

Teaching hours 180

Lab hours 40

Individual study 80

Planned office hours

Contents summary Module M1 - Requirements Engineering for Dependable Systems

• Functional and Non-Functional Requirements

• Requirements Engineering Processes

• Requirements Elicitation and Analysis

mailto:Claus.Pahl@unibz.it
https://www.unibz.it/it/faculties/engineering/academic-staff/person/36376-claus-pahl
https://www.unibz.it/it/faculties/engineering/academic-staff/person/36376-claus-pahl
mailto:Eduardo.MartinsGuerra@unibz.it
https://www.unibz.it/it/faculties/engineering/academic-staff/person/43879-eduardo-martins-guerra
https://www.unibz.it/it/faculties/engineering/academic-staff/person/43879-eduardo-martins-guerra

• Requirements Specification

• Validation of Requirements

• Requirements Change

Module M2 - Software Architecture

• Quality Attributes and Software Architecture Concepts

• Architecture Partitioning (layers, modules, components)

• Flexible and Adaptive Architectural Design

• Architectural Patterns and Styles

• Integrating AI Components into Architectural Designs

• Continuous Architecture

Course content Module M1 - Requirements Engineering for Dependable Systems –

defines different types of requirements and introduces the different

phases of a requirements engineering process. This provides a generic

process framework. In the second part of this module, the focus is on

dependable systems and specific requirement types and processes for

this context, addressing in particular metrics for software quality. The

students will learn the relevant skill in two separate, group-oriented and

problem-based projects.

Module M2 - Software Architecture - This course explores the

foundational concepts of software architecture, emphasizing quality

attributes and architectural design principles. It covers architecture

partitioning through layers, modules, and components, and focuses on

creating flexible and adaptive systems. Students will examine key

architectural patterns and styles, learn strategies for integrating AI

components into system architectures, and understand the principles of

continuous architecture to support ongoing system evolution and

improvement.

Keywords Requirements Engineering, Dependability Requirements, Software

Architecture, Software Design

Prerequisites Basic courses in Programming and Software Engineering. Familiarity with

UML and software modelling. Familiarity with the basics of Object-

orientation and automated testing.

Propaedeutic courses N/A

Teaching format Frontal lectures, exercises; team and/or individual projects.

Mandatory attendance Not compulsory. Non-attending students must contact the lecturer at the

start of the course to agree on the modalities of the independent study.

Specific educational objectives

and learning outcomes

Knowledge and understanding

D1.1 possess solid knowledge of both the fundamentals and the

application aspects of the various fundamental areas of computer

science;

D1.2 be able to analyse and solve even complex problems in the area of
Software Engineering for Information Systems with particular emphasis

on the use of empirical evaluation studies, methods, techniques, and

technologies;

D1.3 have an in-depth knowledge of the scientific method of

investigation applied to even complex systems and innovative
technologies that support Software Engineering and its various fields of

applications.

D1.4 have an in-depth knowledge of the principles, structures and use of

processing systems for the automation of software systems.

D1.5 know the fundamentals, techniques, and methods of design,
customisation and implementation of software to support the automation

of new-generation software systems for industrial production, company

business, education, and society.

D1.6 understand the elements of corporate and professional culture.

D1.7 know the various fields of application of Software Engineering also

with reference to the local, national, and international economic-social

context.

Applying knowledge and understanding

D2.3 ability to apply the principles of software engineering to IT and non-

IT domains of varying complexity in which software technology is of

great importance.

D2.4 ability to define an innovative technical solution to an application

problem that respects technical, functional, and organisational

constraints and requirements.

D2.5 ability to extend and modify an existing technical solution or

theoretical model in an original way, taking into account changing

conditions, requirements and the evolution of technology.

Making judgments

D3.2 ability to plan and re-plan a technical project activity and to carry it

out within the defined deadlines and objectives.

D3.3 ability to define work objectives compatible with the available time

and resources.

D3.4 ability to reconcile conflicting project objectives, find acceptable

compromises within the limits of cost, resources, time, knowledge, or

risk.

D3.5 ability to work with broad autonomy, taking responsibility for

projects and structures.

Communication skills

D4.2 ability to structure and draft scientific and technical descriptive

documentation of project activities for diverse audiences.

D4.3 ability to work and co-ordinate the work of a multi-disciplinary
project team, to identify activities aimed at achieving the project

objectives.

D4.5 ability to interact and collaborate in the realisation of a project or

research with peers and experts.

Learning skills

D5.2 ability to independently keep up to date with developments in the

most important fields of information technology.

Specific educational objective

and learning outcomes

(additional information)

Module 1: Requirements Engineering for Dependable Systems

The course objective is to familiarize students with advanced techniques

and tools to elicit, specify and manage software system requirements,

aiming to understand both conceptual foundations as well as practical

applicability. The students will acquire skills to elicit requirements in

various settings and specify them in a way that permits communication

with various stakeholders, but also suitable for managing change in

software projects. Quality management is specifically introduced. The

students are exposed to problem-solving skills that allow requirements

engineering in a dynamic, multi-stakeholder setting.

Module 2: Software Architecture

The following are the module specific objective: To understand the role
played by software architecture in software development lifecycle; to

design software architecture based on patterns and best practices; to

obtain an overview of different software architecture styles and the
newest trends in software architecting; to evaluate and balance trade-

offs of quality attributes on software architecture; to design architectures
that integrate artificial intelligence components into applications; and to

learn how to apply different software architecture styles to develop high

quality software.

Assessment Module 1: Requirements Engineering for Dependable Systems

The assessment is based on the lab assessment and the final written

exam. The lab assessment is composed practical activities that can be

performed by the students during the course. The final written exam

evaluates the students' understanding of the theoretical backgrounds

and the ability of solving problems. The student should achieve at least

50% of the lab grade to do the final exam.

Module 2: Software Architecture

The assessment is based on the lab assessment and the final written

exam. The lab assessment is composed of practical activities that can

be performed by the students during the course. The final written exam

evaluates the students' understanding of the theoretical background

and the ability to solve problems. The student should achieve at least

50% of the lab grade to do the final exam.

The written exam will evaluate the student's knowledge (D1.1, D1.2,
D1.3, D1.4, D1.5, D1.6, D1.7) and how this knowledge can be applied to

specific problems (D2.3, D2.4, D2.5). The course labs and activities will

evaluate their decision-making capacity in the context of software
projects (D3.2, D3.3, D3.4, D3.5), exercising their communication skills

(D4.2, D4.3, D4.5). Learning skills will be evaluated in practical activities,
in which students need to research new technologies and methods

(D5.2) in the context of each module.

Evaluation criteria Module 1: Requirements Engineering for Dependable Systems

For attending students, the grade is calculated based on (i) the lab

assessment (50% weight) and (ii) the written final exam (50% weight).

For non-attending students, they should follow the delivery schedule

for the lab assessments, the grade is calculated the same way.

Module 2: Software Architecture

For attending students, the grade is calculated based on (i) the lab

assessment (50% weight) and (ii) the written final exam (50% weight).

For non-attending students, they should follow the delivery schedule

for the lab assessments, the grade is calculated the same way.

A student needs to be approved in both modules to be approved in the

course. The final grade is the average value of the grades from both

modules.

Required readings • Sommerville, I. (2015). Software Engineering. 10th Edition. Pearson.

• Laplante, P.A., and Kassab, M.H. (2022). Requirements Engineering for

Software and Systems. CRC Press.

• Robert C. Martin. 2017. Clean Architecture: A Craftsman's Guide to
Software Structure and Design (1st ed.). Prentice Hall Press, Upper

Saddle River, NJ, USA.

• Mark Richards. 2015. Software Architecture Patterns. O'Reilly Media, Inc.

Supplementary readings • Johnson, R., & Vlissides, J. (1995). Design patterns. Elements of

Reusable Object-Oriented Software Addison-Wesley, Reading.

• Fowler, M. (2018). Refactoring: improving the design of existing code.

Addison-Wesley Professional.

• Evans, E., & Evans, E. J. (2004). Domain-driven design: tackling

complexity in the heart of software. Addison-Wesley Professional.

• Len Bass, Paul Clements, and Rick Kazman. 2012. Software Architecture

in Practice (3rd ed.). Addison-Wesley Professional.

• Open educational resources, representing alternative or supplementary

materials, shall be linked to the course website.

Further information Software Modelling (e.g., Argo UML, Papyrus, StarUML, draw.io), Java

JDK, Java Programming IDE (e. g. Eclipse, Intellij)

Sustainable Development

Goals (SDGs)

Affordable and clean energy + industry, innovation and infrastructure +
sustainability cities and communities + responsible consumption and

production

Course module

Course constituent title Software Design and Implementation M1 - Requirements Engineering for

Dependable Systems

Course code 76105A

Scientific sector INFO-01/A

Teaching language(s) English

Lecturer(s) Prof. Dr. Claus Pahl,

Claus.Pahl@unibz.it

https://www.unibz.it/it/faculties/engineering/academic-

staff/person/36376-claus-pahl

Teaching assistant(s)

Semester 1

CP 6

Responsible lecturer

Teaching hours 40

Lab hours 20

Individual study 90

Planned office hours 18

mailto:Claus.Pahl@unibz.it
https://www.unibz.it/it/faculties/engineering/academic-staff/person/36376-claus-pahl
https://www.unibz.it/it/faculties/engineering/academic-staff/person/36376-claus-pahl

Contents summary • Functional and Non-Functional Requirements

• Requirements Engineering Processes

• Requirements Elicitation, Analysis, Specification, Verification

• Dependability Systems Principles

• Dependability Requirements and Metrics

• Requirements Change

Course content The course objective is to familiarize students with advanced techniques

and tools to elicit, specify and manage software system requirements,
aiming to understand both conceptual foundations as well as practical

applicability. The students will acquire skills to elicit requirements in
various settings and specify them in a way that permits communication

with various stakeholders, but also suitable for managing change in
software projects. Quality management is specifically introduced. The

students are exposed to problem-solving skills that allow requirements
engineering in a dynamic, multi-stakeholder setting. The first part will
focus on generic requirements engineering. The second part will deepen

dependable systems requirements and respective techniques

Teaching format Frontal lectures, exercises; team and/or individual projects.

Required readings • Sommerville, I. (2015). Software Engineering. 10th Edition. Pearson.

• Laplante, P.A., and Kassab, M.H. (2022). Requirements Engineering for

Software and Systems. CRC Press.

Supplementary readings • Open educational resources, representing alternative or supplementary

materials, shall be linked to the course website.

Course module

Course constituent title Software Design and Implementation M2 - Software Architecture

Course code 76105B

Scientific sector ING-INF/05

Teaching language(s) English

Lecturer(s) Dr. Eduardo Martins Guerra,

eduardo.guerra@unibz.it

https://www.unibz.it/it/faculties/engineering/academic-

staff/person/43879-eduardo-martins-guerra

mailto:eduardo.guerra@unibz.it
https://www.unibz.it/it/faculties/engineering/academic-staff/person/43879-eduardo-martins-guerra
https://www.unibz.it/it/faculties/engineering/academic-staff/person/43879-eduardo-martins-guerra

Teaching assistant(s)

Semester 1

CP 6

Responsible lecturer

Teaching hours 40

Lab hours 20

Individual study 90

Planned office hours 135

Contents summary • Quality Attributes and Software Architecture Concepts

• Architecture Partitioning (layers, modules, components)

• Flexible and Adaptive Architectural Design

• Architectural Patterns and Styles

• Integrating AI Components into Architectural Designs

• Continuous Architecture

Course content This course provides a comprehensive exploration of foundational and

advanced topics in software architecture, focusing on both theoretical

understanding and hands-on application. Students will begin by

examining key quality attributes and essential software architecture

concepts, followed by strategies for architecture partitioning, including

the use of layers, modules, and components. Emphasis will be placed on

flexible and adaptive architectural design to accommodate evolving

requirements. The course also covers a range of architectural patterns

and styles, empowering students with tools to make informed design

decisions. A modern perspective is introduced through the integration of

AI components into architectural designs, preparing students to address

current industry demands. Additionally, the concept of continuous

architecture will be explored to support ongoing system evolution.

Throughout the course, students will engage in practical activities that

reinforce theoretical knowledge and promote the application of

architectural principles in real-world scenarios.

Teaching format Frontal lectures, exercises; team and/or individual projects.

Required readings • Robert C. Martin. 2017. Clean Architecture: A Craftsman's Guide to
Software Structure and Design (1st ed.). Prentice Hall Press, Upper

Saddle River, NJ, USA.

• Mark Richards. 2015. Software Architecture Patterns. O'Reilly Media, Inc.

Supplementary readings • Johnson, R., & Vlissides, J. (1995). Design patterns. Elements of

Reusable Object-Oriented Software Addison-Wesley, Reading.

• Fowler, M. (2018). Refactoring: improving the design of existing code.

Addison-Wesley Professional.

• Evans, E., & Evans, E. J. (2004). Domain-driven design: tackling

complexity in the heart of software. Addison-Wesley Professional.

• Len Bass, Paul Clements, and Rick Kazman. 2012. Software Architecture

in Practice (3rd ed.). Addison-Wesley Professional.

• Open educational resources, representing alternative or supplementary

materials, shall be linked to the course website.

