COURSE DESCRIPTION – ACADEMIC YEAR 2024/2025

Course title	Modern Control
Course code	42412
Scientific sector	IINF-04/A
Degree	Bachelor in Electronics and Cyber-Physical Systems Engineering
Semester	II
Year	3
Academic Year	2024/25
Credits	9
Modular	no

Total lecturing hours	36
Total lab hours	54
Attendance	Attendance at lectures is strongly recommended. Attendance at exercise sessions is required.
Prerequisites	Lectures and exercises of Mathematical Analysis I and II; Linear Algebra; Physics I; Physics II; and Fundamentals of Systems and Control
Course page	

objectives metho contro exercise	udent should understand the basic principles of ds of modern control with focus on state-space and optimal control and be able to apply them in ses, including in Matlab and Simulink, as well as in cory experiments on real hardware.
--	---

Lecturer	Prof. Karl von Ellenrieder - Facoltà di Ingegneria Tel. : +39 0471 017172 E-mail: <u>karl.vonellenrieder@unibz.it</u> Web: <u>https://www.unibz.it/faculties/person/37038-karl- dietrich-von-ellenrieder</u>
	Prof. Santos Miguel Orozco Soto - Facoltà di Ingegneria Tel. : +39 0471 016000 E-mail: <u>SantosMiguel.OrozcoSoto@unibz.it</u> Web: <u>https://www.unibz.it/it/faculties/engineering/academic- staff/person/50657-santos-miguel-orozco-soto</u>
	Dr. Parvin Mahmoudabadi - Facoltà di Ingegneria E-mail: <u>Parvin.Mahmoudabadi@unibz.it</u> Web: https://www.unibz.it/en/faculties/engineering/academic- staff/person/48665-parvin-mahmoudabadi

Freie Universität Bozen

UNIDZ Libera Università di Bolzano Università Liedia de Bulsan

> IINF-04/A – Systems and Control Engineering Scientific sector of the lecturer **Teaching language** Enalish **Office hours** As listed on Teams or by appointment **Teaching assistant (if** TBD any) **Office hours** As listed on Teams or by appointment List of topics covered 1. Modelling and systems analysis in state space (dynamic system modelling in time domain and statespace representation). 2. Dynamic system response derived from state-space representation and steady-state error. 3. Stability in state space. 4. Control design in state space (Pole placement design techniques; controllability, observability, full-state observers). 5. Optimal control of dynamic systems (Problems with fixed and variable end-points as well as with equality and inequality constraints; maximum principle and Hamilton-Jacobi-Bellmann equation; linear guadratic regulator). 6. Understanding of observers in control systems. 7. Understanding of optimal state observers and Kalman filters. 8. Computer-aided analysis and design using Matlab/Simulink. 9. Implementation of controllers and experimental evaluation on real-hardware setups. Lessons are divided into i) theoretical classroom lessons, **Teaching format** ii) classroom exercises, and iii) lab exercises. Knowledge and understanding Learning outcomes (ILOs) Knowledge and understanding in the field of: 1. State-space modelling and control 2. Optimal control 3. Observers Applying knowledge and understanding 4. Ability to apply knowledge for solving given problems, including solving them with numerical data using software packages like Matlab/Simulink and their implementation and evaluation on real hardware setups. Making judgements 5. Ability to judge plausibility of results. Communication skills 6. In-class exercises will require you justify your

solutions/conclusions concisely (in clear and simple language).
 <u>Ability to learn</u> Zearning skills to independently study and apply methods of modern control for specific applications beyond topics covered in this lecture.

Assessment	Formative as	Formative assessment		
	Form	%	Length /duration	ILOs assessed
	Exercises	40	54 hours total (lab + in class)	1-7
	Summative assessment			
	Form	%	Length /duration	ILOs assessed
	Final Exam	60	4 hours	1-7
Assessment language	English			
Evaluation criteria and criteria for awarding marks	Labs: Completeness and correctness of reports; quality of writing; level of observation of physical processes In-Class Exercises: Completeness and correctness of answers; level of understanding			
	Written Final Exam: Completeness and correctness of answers.			
	Students must receive an overall grade of greater than 60/100 points to pass the course.			

Required readings	Lecture notes provided
Supplementary readings	Additional books and articles may be recommended by the instructor during the course.