

COURSE DESCRIPTION – ACADEMIC YEAR 2024/2025

Titel der Lehrveranstaltung	Holzchemie
Code der Lehrveranstaltung	42603
Wissenschaftlich- disziplinärer Bereich der Lehrveranstaltung	Agricultural Chemistry (AGRI-06/B)
Studiengang	LP-03 Wood Technology
Semester	1°
Studienjahr	I
Jahr	2024/2025
Kreditpunkte	3
Modular	nein

Gesamtanzahl der Vorlesungsstunden	30
Gesamtzahl der	-
Laboratoriumsstunden	
Gesamtzahl der	
Übungsstunden	
Anwesenheit	Keine Anwesenheitspflicht
Voraussetzungen	
Link zur Lehrveranstaltung	

Spezifische Bildungsziele

Im Rahmen des Kurses zur Holzchemie erlernen die Studierenden zunächst die Grundlagen der anorganischen und organischen Chemie. Sie verstehen den Aufbau von Atomen, die Struktur von Materie und die chemischen Reaktionen, die in biologischen und nicht-biologischen Systemen ablaufen. Dabei liegt ein Schwerpunkt auf dem Verständnis der chemischen Bindungen, der molekularen Struktur und der Unterschiede zwischen anorganischen und organischen Verbindungen. Ein solides Grundwissen über die verschiedenen Elemente des Periodensystems und deren Bedeutung in der Chemie von Holz und Pflanzenzellen wird vermittelt.

Darüber hinaus erwerben die Studierenden Kenntnisse über den Aufbau der pflanzlichen Zelle, insbesondere über die chemischen Prozesse, die in den Zellorganellen stattfinden. Sie lernen den Zusammenhang zwischen chemischen Grundbausteinen wie Kohlenhydraten, Lipiden, Aminosäuren und den spezifischen Bestandteilen der Zellwand kennen. Dieses Wissen hilft ihnen, die komplexen biochemischen Abläufe in der Pflanzenzelle zu verstehen, darunter die Bildung und Funktion der Zellwand.

Ein besonderer Schwerpunkt liegt auf den chemischen Bestandteilen von Holz. Die Studierenden vertiefen ihr

Wissen über die Hauptkomponenten der Holzstruktur:
Zellulose, Hemizellulose, Lignin und Extraktstoffe. Jede
dieser Verbindungen wird im Detail behandelt, einschließlich ihrer chemischen Struktur.
Durch diesen ganzheitlichen Ansatz verstehen die

Durch diesen ganzheitlichen Ansatz verstehen die Studierenden die chemischen Zusammenhänge zwischen den molekularen Bausteinen der Pflanzenzelle und den physikalischen und mechanischen Eigenschaften von Holz. Dies befähigt sie, die chemischen Reaktionen und Umwandlungen, die während der Holzverarbeitung und nutzung stattfinden, zu analysieren und zu beurteilen.

Dozent	Raphael Tiziani, raphael.tiziani2@unibz.it
Wissenschaftlich disziplinärer Bereich des Dozenten	Agricultural Chemistry (AGRI-06/B)
Unterrichtssprache	Deutsch
Sprechzeiten	Per email Vereinbarung
Wissenschaftlicher Mitarbeiter (wenn vorgesehen)	-
Sprechzeiten	Nach Terminvereinbarung per Mail
Auflistung der behandelten Themen	 Das Atom Die organische Chemie Pflanzenzelle Holz Zellulose Hemizellulose Lignin Extraktstoffe
Unterrichtsform	PräsentationenFrontalunterrichtSeminare

Erwartete Lernergebnisse	Die Studierenden erwerben fundierte Kenntnisse der anorganischen und organischen Chemie, einschließlich Atomaufbau, chemischer Bindungen und Reaktionen. Sie verstehen die Struktur der pflanzlichen Zelle und deren chemische Grundbausteine wie Kohlenhydrate, Lipide und Proteine sowie deren Funktion in der Zellwand.
	Darüber hinaus lernen sie die wichtigsten chemischen Bestandteile des Holzes – Zellulose, Hemizellulose, Lignin und Extraktstoffe – im Detail kennen. Sie verstehen, wie

	diese Komponenten die Eigenschaften von Holz beeinflussen, und sind in der Lage, chemische Prozesse bei der Holzverarbeitung zu analysieren und deren Auswirkungen auf die Materialeigenschaften zu beurteilen.
Art der Prüfung	Mündliche Prüfung: a) Prüfungsfragen über die in der Lehrveranstaltung behandelten Themen 30 min pro Student
Prüfungssprache	Deutsch
Bewertungskriterien und Kriterien für die Notenermittlung	Bei Prüfung werden die Klarheit der Antworten, die Beherrschung der fachspezifischen Sprache, Synthesefähigkeit, das Urteilsvermögen und die Fähigkeit, Bezüge zu den behandelten Themen herzustellen und selbständig Themen zusammenzufassen, bewertet.
Pflichtliteratur	Präsentationen, und Unterrichtsmaterialien, geteilte Informationen während des Unterrichts
Weiterführende Literatur	Literatur wird mitgeteilt

COURSE DESCRIPTION – ACADEMIC YEAR 2024/2025

Course title	Wood Chemistry
Course code	42603
Scientific sector	Agricultural Chemistry (AGRI-06/B)
Degree	LP-03 Wood Technology
Semester	1 st
Year	I
Academic year	2024/2025
Credits	3
Modular	no

Total lecturing hours	30
Total exercise hours	
Attendance	Not mandatory
Prerequisites	-
Course page	

Teaching format	- Presentations- Frontal teaching- seminars
List of topics covered	 The Atom Organic chemistry Plant cell Wood Cellulose Hemicellulose Lignin Extractives

Specific objectives	educational	Within the course on wood chemistry, students first learn the basics of inorganic and organic chemistry. They understand the structure of atoms, the structure of matter, and the chemical reactions that take place in biological and non-biological systems. The focus is on understanding chemical bonds, molecular structure, and the differences between inorganic and organic compounds. A solid basic knowledge of the various elements of the periodic table and their significance in the chemistry of wood and plant cells is imparted. Furthermore, students acquire knowledge about the structure of the plant cell, especially about the chemical processes taking place in the cell organelles. They learn the relationship between basic chemical building blocks such as carbohydrates, lipids, amino acids, and the specific components of the cell wall. This knowledge helps them understand the complex biochemical processes in the plant cell, including the formation and function of the cell wall. A special focus is on the chemical components of
		wood. Students deepen their knowledge about the main

components of the wood structure: cellulose, hemicellulose, lignin, and extractives. Each of these compounds is treated in detail, including their chemical structure. Through this holistic approach, students understand the chemical relationships between the molecular building blocks of the plant cell and the physical and mechanical properties of wood. This enables them to analyze and assess the chemical reactions and transformations that take place during wood processing
and utilization.

Lecturer	Raphael Tiziani, raphael.tiziani2@unibz.it
Learning outcomes	Within the course on wood chemistry, students acquire sound knowledge of inorganic and organic chemistry, including atomic structure, chemical bonds and reactions. They understand the structure of the plant cell and its basic chemical building blocks such as carbohydrates, lipids and proteins, as well as their function in the cell wall. Furthermore, they learn about the most important chemical components of wood - cellulose, hemicellulose, lignin and extractives - in detail. They understand how these components influence the properties of wood and are able to analyze chemical processes during wood processing and assess their impact on material properties. Through this comprehensive approach, students gain a deep understanding of the chemical relationships between the molecular building blocks of the plant cell and the physical and mechanical properties of wood. This enables them to analyze and assess the chemical reactions and transformations that take place during wood processing and utilization

Assessment	Oral exam: a) Examination questions on the topics covered in the course 30 minutes per student			
Assessment language	German			
Evaluation criteria and criteria for awarding marks	In the exam, the clarity of the answers, the mastery of subject-specific language, the ability to synthesize information, judgment, and the ability to make connections to the topics covered and independently summarize topics will be assessed.			

Required readings	Presentations,	studies	and	teaching	materials,	shared	
	information during lecture						
Supplementary readings	Literature will b	oe shared	1				