

Syllabus Course description

Course title	Industrial Automation and Digital Manufacturing
Course code	47557
Scientific sector	ING-IND/13 (Modul 1) + ING-IND/16 (Modul 2)
Degree	Master in Industrial Mechanical Engineering
Semester	2
Year	Ι
Academic year	2024/25
Credits	10
Modular	Yes

Total lecturing hours	Modul 1 – 24 hrs, Modul 2 - 24 hrs
Total lab hours	Modul 1 – 24 hrs, Modul 2 – 24 hrs
Total exercise hours	
Attendance	Highly recommended
Prerequisites	Fundamentals of mathematical analysis and linear algebra.
Course page	https://www.unibz.it/en/faculties/engineering/master- industrial-mechanical-engineering/course- offering/?academicYear=2024

Specific educational objectives	The course belongs to the class of characterizing courses in the Master in Industrial Mechanical Engineering. It aims at teaching both scientific foundations and practical methods and helps to develop specific professional skills in the domains of industrial robotics and digital manufacturing. Students will learn, in Module 1 "Mechatronics and Robotics ", fundamental concepts and methodologies for understanding and modelling mechatronic systems and industrial robots, i.e. mandatory concepts and skills for the development of digital models and twins as well as for the kinematics and dynamics evaluation and control; then, they will acquire fundamental knowledge and competences on how to simulate and program industrial robots by means of exercises and practical activities.
	Module 2 "Digital Manufacturing and Simulation" provides the basics in cyber-physical production systems, data- driven production, industrial internet of things, digital twin technology and simulation methodologies. Theoretical foundations will focus on the design, planning and implementation of connected machines and resources in production as well as the fundamentals of simulation for production and logistics. In addition to theoretical models and methods the practical use of cyber-physical systems as well as specific simulation software in the production environment is treated by means of exercises

Freie Universität Bozen Unibz Libera Università di Bolzano Università Liedia de Bulsan

	and practical case studies. Smart Mini Factory lab will serve as laboratory for both the modules.
Module 1	Mechatronics and Robotics
Lecturer	Dr. Andrea Giusti
Teaching language	English
Office hours	By appointment
Teaching assistant (if any)	Dott. Matteo Manzardo Room: Smart Mini Factory Via Rosmini 7 39100 Bozen Matteo.Manzardo@student.unibz.it
Office hours	/
List of topics covered	 The module will cover: Introduction to mechatronics and robotics. Mechatronic systems: typical structures and components; basics of modelling, identification, and control. Robotics: direct kinematics; kinematic calibration; inverse kinematics; differential kinematics and statics; trajectory planning; robot dynamics and control (hints). Examples of programming of industrial robotic systems.
Teaching format	The topics are presented by the professor by means of Power Point presentations or the blackboard. Practical parts and lab activities/exercises are planned also in the Smart Mini Factory laboratory.
Module 2	Digital Manufacturing and Simulation

Module 2	Digital Manufacturing and Simulation
Lecturer	Dr. Matteo De Marchi
Scientific sector of the lecturer	ING-IND/16
Teaching language	English
Office hours	By appointment
Teaching assistant (if any)	
Office hours	1
List of topics covered	The course covers the following topics: Lecture:
	Part 1) SIMULATION
	 Fundamentals of simulation modelling
	Principles, methods and procedures for implementing simulation studies
	Fields of application for simulation

Freie Universität Bozen Libera Università di Bolzano

Università Liedia de Bulsan

	Software tools for simulation
	 Part 2) DIGITAL MANUFACTURING Introduction to data-driven production Industrial Internet of Things Data Analytics and retrofitting of legacy systems Work 4.0 and digital worker assistance systems Digital twins in manufacturing Manufacturing cybersecurity
	 <u>Simulation Lab:</u> 1. Introduction to FlexSim 2. Data analysis and distributions 3. Case study modelling (production plant and/or logistics systems modelling and simulation) 4. Advanced features and Virtual Reality practice
	 <u>Industrial Internet of Things (IoT) Lab:</u> 1. Introduction to the case study 2. Retrofitting of legacy equipment 3. Hardware set-up and software coding 4. Data extraction and analysis 5. KPI visualization on IoT-platform
Teaching format	Frontal lectures and exercises in Smart Mini Factory Lab
Learning outcomes	 Knowledge and understanding Module 1: The students will know the most important concepts about: fundamentals and methods of mechatronics; modelling, planning and control of industrial robotic systems; 3D mechanisms from a kinematic point of view. Module 2: The student knows the basics and advanced features of simulation modelling and analysis as well as the current methods and tools for digitalization in

Applying knowledge and understanding

manufacturing.

The student applies and practices theoretical contents through exercises, case studies and project work. Theory contents are practiced through exercises using practical examples. From Module 1, the students will know how to treat a

robotic system form a kinematic (position and speed) and static point of view as well as how to set-up a robotic simulator and motion control program. In Module 2 the students develop independently a

simulation model for given case studies out from the production and logistics environment. In a second lab they practice IIoT and handling data with IoT platforms.

	Presentation techniques are trained using equipment such as flipcharts and power point presentations.
	Making judgements Module 1: The student will be able to make judgements selecting the suitable mechatronic and robotic system for a practical industrial solution. Module 2: The student judges the use of appropriate methods, models and systems for simulation and Industrial IoT. Students are able to judge and interpret simulation results and data extracted from production and to use them for derivate measures for optimization.
	 <u>Communication skills</u> Ability to present the acquired knowledge and competences with a proper language. Ability to express concepts with the field related technical terminology
	Learning skills The students learn both by frontal teaching (theory part) as well as by exercises in the classroom and in the Smart Mini Factory lab (practical exercises). The students will be able to enlarge their knowledge through self-study and consultation of scientific and technical documentation.
Assessment	<u>Module 1:</u> Knowledge and understanding: written exam/report Applying knowledge and understanding: group work Making judgements: group work Communication skills: group work Learning skills: group work, written/oral exam or presentation
	Module 2: Knowledge and understanding: written exam Applying knowledge and understanding: assignments in lab exercises Making judgements: assignments in lab exercises Communication skills: presentation of results of lab exercises Learning skills: lab exercises, written/oral exam
	Written exam means exam with review questions and exercises. Assignments in lab exercises means case study work and subsequent presentation of the results.
Assessment language	English
Evaluation criteria and criteria for awarding marks	Final single grade by arithmetic average of the grade in Module 1 and Module 2.
	Module 1: The final mark will be obtained by combining

the evaluations of the written exam (50%) and of the oral examination/presentation (50%).
Module 2: The grade is calculated 50% from the results of the written exam and 50% from the results of the project work performed in the Simulation lab and IIoT lab.
Criteria for the evaluation of the written examination: completeness and correctness of the answers. Criteria for the evaluation of the project work / case study: accuracy and completeness as well as creativity in structuring of the proposed solution, the quality of the results and quality of presentation.
In case a written exam cannot be held due to "force majeure" such as COVID-19 restrictions, the course responsible reserve the right to hold a written exam via online tools (e.g. OWL) and/or an oral exam with digital communication platforms instead of the written exam.

Required readings	Lecture notes and documents for exercise will be available on the course platform (e.g. Teams, OLE or reserve collections)
Supplementary readings	Module 1: Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G., Robotics, Modelling, Planning and Control, Springer, 2009.
	Module 2 Applied simulation: modeling and analysis using FlexSim M. Beaversotck, A. Greenwood, W. Nordgren 2017 ISBN : 978-0-9832319-7-4 Available in the unibz library for students of this course Bozen-Bolzano University Library 14-Reference Collection ST 341 F34 B386
	Industrial Internet of Things: Cybermanufacturing Systems edited by Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat. Serie: Springer Series in Wireless Technology, Available online via unibz library database Springer Link