

1/2

COURSE DESCRIPTION – ACADEMIC YEAR 2024/2025

Course title Software as a Research Contribution (Seminar)

Course code 71077

Scientific sector INF/01

Degree PhD in Computer Science

Semester 1

Year 2024-2025

Credits 3

Modular No

Total lecturing hours 30

Attendance Compulsory.
Prerequisites -

Specific educational
objectives

The goal of this module is to present how the software produced as

part of their research projects can also be a relevant research

contribution. Students will acquire skills and competencies related to
how to share and structure their code in a way that it could be reused

in the future in other studies. The students are exposed to techniques
for development an open-source community around the software, to

improve the software maintainability, to identify possible hot-spots to

make the software extensible, and to use good practices for software
documentation. These topics will be complemented with discussions

of the importance of these properties for reproducibility. Finally, it will
also present the format used in conference tracks and Journals

focused on software tools, explaining how the students can publish

this kind of result.

Lecturer(s) Eduardo Martins Guerra and Andrea Janes.

Contact SER-I 1.08, 21 Via Cassa di Risparmio
eduardo.guerra@unibz.it

Andrea.Janes@unibz.it

Scientific sector of
lecturer(s)

INF/01, ING-INF/05

Teaching language English

Office hours During the lecture times, and by arrangement by email

List of topics ● Open-source software

● Concepts of software maintainability

● Clean code

● Refactoring and automated testing

● Software documentation practices

● Software role in studies reproducibility

● How to report Software as a research contribution in tracks
dedicated to software tools

Teaching format Frontal lectures, exercises; team and/or individual projects.

Learning outcomes Knowledge and understanding

• To have a thorough knowledge of the fundamental techniques
for software maintainability

• To have a thorough knowledge of how to prepare your software

to be reused in future studies.

mailto:eduardo.guerra@unibz.it
mailto:Andrea.Janes@unibz.it

2/2

Applying knowledge and understanding

• Be able to apply principles of Clean Code to improve the internal
software quality.

• Be able to apply refactoring and automated testing as a mean to

keep the code maintainable.

Making judgments

• Be able to make design decisions to modularize parts of the

software that might be replaced in future studies.
• Be able to choose the best approach to document the software

developer as part of a research study.

Communication skills

• Present and share the software in as open-source project that

can attract contributors.
• Present the software in publications to tracks dedicated to

software tools

Learning skills

• Have developed learning skills to extract information of existing
projects targeting their reuse.

Assessment The assessment is based on assignments done by students related to

the content of the course.

Assessment language English

Assessment Typology Monocratic

Evaluation criteria and

criteria for awarding
marks

The student’s grade is calculated based on the average grade from

the course assignments. .

Required readings The course will be based on lecture notes.

Supplementary readings • Fogel, K. (2005). Producing open source software: How to run

a successful free software project. " O'Reilly Media, Inc.".

• Martin, R. C. (2009). Clean code: a handbook of agile software

craftsmanship. Pearson Education.

• Santos, J., & Correia, F. (2022). Patterns for Documenting

Open Source Frameworks. arXiv preprint arXiv:2203.13871.

• Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D.

(2002). Refactoring: improving the design of existing code.

1999.

• Open educational resources, representing alternative or

supplementary materials, shall be linked to the course

website.

Software used -

