unibz

Syllabus Course description

Course title	Design with Composite Materials
Course code	47564
Scientific sector	ING-IND/21
Degree	Master in Industrial Mechanical Engineering
Semester	1
Year	2
Academic year	2024/2025
Credits	5
Modular	No

Total lecturing hours	28
Total lab and exercise hours	18
Attendance	Not mandatory but strongly recommended
Recommended preliminary knowledge	basic material science, construction and production technologies, experimental physics
Connections with other courses	Design and manufacturing of industrial products, Advanced Topics on Machine Design, Finite Element Analysis
Course page	https://www.unibz.it/en/faculties/engineering/master- industrial-mechanical-engineering/course- offering/?academicYear=2024

composite materials and to assess their failure in operation to derive design optimizations

Lecturers	DrIng. Leibenguth Peter peter.leibenguth@unibz.it
Scientific sector of the lecturers	ING-IND/14
Teaching language	English
Office hours	15
Teaching assistant (if any)	none
Office hours	Upon appointment to be agreed via email, preferably after course times

Freie Universität Bozen

Libera Università di Bolzano Università Liedia de Bulsan

List of topics covered Professional applications of the covered topics	 General introduction to composites and their history Materials in composite technology Technical applications going beyond the structural use Production and processing technologies Interfaces and surfaces Behaviour of composites: lab v. operational conditions Design and construction Classical toolsets Biomimetics and nature-inspired approaches Optimization technologies Joining technologies Destructive and non-destructive characterization Failure assessments and their impact on design Recycling and sustainability considerations Widespread application in automotive, aerospace, medical and sporting good products and technologies
Teaching format	Lecture and exercise

1. Knowledge and understanding: Students should know the theoretical background of diverse composite materials from materials, processing, calculation, and design perspective
2. Applying Knowledge and understanding: Students should be able to discern the different properties and production methods of the basic material classes from those of composite materials. They should be able to select and use basic calculation methods to determine composite behaviour from data of the constituent materials.
3. Making judgments: Students should be able to critically decide when to employ composite materials in component/product design, how to experimentally assess their properties and how to use failure cases analyses as a means to improve designs.
4. Communication skills: Students should be able to present results of the exercises and contributions to discussions/own talks in appropriate technical/scientific language.
5. Learning skills Students should be able to autonomously search and critically appraise technically relevant data, publications and case studies.

Assessment	Formative assessment			
	Form	Length	n /duration	ILOs assessed
	In-class exercises	9 x 120) min	1, 2, 3, 4, 5
	Summative assessment			
	Form	%	Length /duration	ILOs assessed
	Written exam	100 %	2 hours	1, 2, 3, 4
Assessment language	English			
Evaluation criteria and criteria for awarding marks	Performance in written exam			

Required readings	 T.W. Clyne et al., "An Introduction to Composite Materials", Cambridge University Press, 3rd ed., 2019, ISBN 978-0-521-86095-6 K.K. Chawla, "<i>Composite Materials – Science and</i> <i>Engineering</i>", Springer, 4th ed., 2019, ISBN 978-3- 030-28982-9 M.F. Ashby, "<i>Materials Selection in Mechanical</i> <i>Design</i>", Butterworth-Heinemann, 5th ed., 2017, ISBN 978-0-08-100599-6
Supplementary readings	 J. Rösler et al., "<i>Mechanisches Verhalten der</i> <i>Werkstoffe</i>", Vieweg+Teubner, 3rd ed., 2008, 978-3- 8351-0240-8 M.F. Ashby, "<i>Materials and the Environment – Eco-</i> <i>informed Material Choice</i>", Butterworth-Heinemann, 3rd ed., 2021, ISBN 978-0-12-821521-0 C. Mattheck, "Design in Nature – Learning from Trees", Springer, 1st ed., 1998, ISBN 978-3-642- 58747-4