

Syllabus Course description

Course title	Automatic Control		
Course code	47511		
Scientific sector	ING-INF/04		
Degree	Master in Industrial Mechanical Engineering		
Semester	Ι		
Year	Ι		
Academic Year	2024-2025		
Credits	5		
Modular	No		

Total lecturing hours	28
Total exercise hours	18
Attendance	Attendance at lectures is strongly recommended. Attendance at exercise sessions is required.
Prerequisites	none
Course page	https://www.unibz.it/en/faculties/engineering/master- industrial-mechanical-engineering/course- offering/?academicYear=2024

Lecturer	Prof. Karl von Ellenrieder - Facoltà di Ingegneria Tel. : +39 0471 017172 E-mail: <u>karl.vonellenrieder@unibz.it</u> Web:			
Scientific sector of the lecturer	ING-INF/04 - Automatica			
Teaching language	English			
Office hours	As listed on Cockpit or by appointment			
Teaching assistant (if any)	N/A			
Office hours	As listed on Cockpit or by appointment			
List of topics covered	The course covers the following topics: 1. Introduction a. Block diagrams b. Linear stability c. Effects of feedback on stability			

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

	2. Classical Control			
	a. root locus – fundamental ideas and design			
	approach			
	b. frequency methods – fundamental ideas and			
	design approach			
Teaching format	3. State Space Control Classroom lectures and exercises			
Teaching tormat				
Learning outcomes (ILOs)	Knowledge and understanding			
	1. Applying basic feedback principles to a broad range of dynamic system models (such as those typically learned in the 1 st cycle).			
	2. Defining feedback loop requirements for improving system steady state response.			
	3. Understanding conditions that guarantee closed loop system stability.			
	4. How to design controllers via Root Locus, Frequency Response and State Space Techniques.			
	Applying knowledge and understanding			
	5. Analyzing, developing and presenting control systems for applications that span multiple disciplines through exercises, which complement the lectures.			
	Making judgements			
	6. On the choice of analytical and numerical tools to use in the exercises. This may require you to integrate knowledge, handle complexity, and formulate judgements with incomplete data.			
	Communication skills			
	7. In-class exercises will require you justify your solutions/conclusions concisely (in clear and simple language).			
	Learning Skills			
	8. Students will be required to develop a proficiency in Matlab and Simulink with a few in-class examples, but mostly on their own. This is intended to help students develop the ability to study in a manner that is largely self-directed or autonomous.			

Assessment	Formative assessment				
	Form	Leng	gth /duration	ILOs assessed	
	Exercises	20 hours total		1-8	
	Summative assessment				
	Form	%	Length /duration	ILOs assessed	
	Exercises	15		1-8	
	Final Exam	85	4 hours	1-6	
Assessment language	English				
Evaluation criteria and criteria for awarding marks	In-Class Exercises: Completeness and correctness of answers; level of understanding				
	Written Final Exam: Completeness and correctness of answers.				
	Students are required to receive an overall grade of greater than 60/100 points in order to pass the course.				

Required readings	Lecture notes and exercises will be available on the UniBZ Open Learning Environment (OLE)
Supplementary readings	Additional books and articles may be recommended by the instructor during the course.