

COURSE DESCRIPTION – ACADEMIC YEAR 2024/2025

Course title	Physics II
Course code	42404
Scientific sector	FIS/01
Degree	L8 – Bachelor in Electronics and Cyber-Physical Systems Engineering
Semester	II
Year	Ι
Academic year	2024/25
Credits	9
Modular	No

Total lecturing hours	54	
Total exercise hours	36	
Attendance	Strongly Recommended	
Prerequisites	Physics I, Mathematical Analysis I, and Geometry	
Lecturer	Professor Franco Cacialli Office: Building K, Room 2.04, TBA following move to NOI e-mail: franco.cacialli@unibz.it tel. 0471 017119 <u>https://www.unibz.it/en/faculties/engineering/academic- staff/person/47601-franco-cacialli</u>	
Lecturing assistant	Dr. Manuela Ciocca	
Contact LA	Office: Via Museo 54, Room 307, TBA following move to NOI e-mail: manuela.ciocca@unibz.it	

Office hours LA	on appointment via mail
Specific educational	The student should understand the basic principles of
objectives	electrostatics, electrodynamics, magnetism, optics, and
	elementary quantum mechanics as well as be able to apply
	them.

Learning outcomes	1. Knowledge and understanding Knowledge and basic understanding of physical laws:
	 Fundamentals of atomic structures Electrostatics Electrodynamics Magnetism Electromagnetic waves and optics Fundamentals of quantum mechanics
	2. Applying knowledge and understanding Students are expected to develop the ability to explain physical phenomena, systems and components based on the concepts learned in the course

	 3. Making judgements Students are expected to develop the ability to give explanations of physical phenomena, systems or devices basing their explanation on the concepts learned in the course. 4. Communication skills Maturing of technical-scientific terminology. 5. Ability to learn Development of an analytic attitude leading the student to decompose a problem in sub-tasks which can be solved with the knowledge already acquired, and the ability to acquire knowledge beyond this course.
List of topics covered	 Electrostatics (Charge, Coulomb, electric field, electric potential, capacity, dielectrics, permittivity) Electrical current (Ohm's law; resistance; Joule's effect; power; direct/alternating current; electrical circuits; Kirchhoff's laws). Magnetostatics (magnetostatic field; magnetic induction; Lorentz's forces; Ampère's laws; magnetic dipoles; magnetic energy). Dynamic electromagnetism (Faraday-Lenz; self- induction). Electromagnetic waves (Maxwell's equation; light propagation; polarization of electromagnetic waves) Photonics: optical phenomena (optics, refraction, interference), introduction to photonic devices. Introduction to quantum mechanics.

Assessment	Formative a	ssessment	
	Form	Details	ILOs assessed
	In-class exercises Summative	Continuously as part of the course problem classes	1-5
	Form	Details	ILOs assessed
	Written	Closed-book exar	n 1-5
	Oral (at the discretion of the	Questions on theo problems solution	

unibz

	examination committee)
Assesment Language	English
Evaluation criteria and criteria for awarding marks	The exam includes a written and an oral component. The written exam (2.5 hours) consists of two parts: a first part (problem 1) with a series of (mostly) qualitative or semi- quantitative questions based on the understanding of the topics covered in the lectures, as well as a second part (problems 2-5) consisting of several numerical or symbolic problems to be solved related to the various topics covered in the lectures.
	 Grading will be based upon: The correctness of the approach and the mathematical steps of the solution, the calculation of numerical results and the correct use of physical quantities and units. The correctness of the provided answers and of the presented, as well as the terminology used.
	To pass the exam the final grade must be greater or equal to 18. If the final score is greater than 30, a "cum laude" grade is awarded.
	The student can have access to the exam with pen, pencil and a portable calculator. A short list of constants is provided to the students along with the text of the exam. Students should also be able provide proof of identity (e.g. Campus card, ID card, passport) before the start of the exam.
	Depending on the outcome of the written exam students may be invited, at the discretion of the examiner(s), to an oral exam that may include questions on the programme covered in the lectures (including those of the written part of the exam) and may lead to an increase <u>or a reduction</u> of the grade of the written component. Students should also be able provide proof of identity (e.g. Campus card, ID card, passport) before the start of the exam.

Required readings	Blackboard / Lecture notes / Selected readings from
	Physics for Scientists and Engineers with Modern Physics, Douglas C. Giancoli, Pearson, 4 th edition, 2008. Also available in electronic format (pdf) from UNIBZ library.
Supplementary readings	Physics for Scientists and Engineers with Modern Physics, Douglas C. Giancoli, Pearson, 4 th edition, 2008.
	Other languages:

Freie Universität Bozen Unibz Libera Università di Bolzano Università Liedia de Bulsan

 Physik, Douglas C. Giancoli, Pearson Studium, Pearson Deutschland GmbH, 3rd edition, 2010 (based on 3rd edition "Physics for scientists and engineers with modern physics", 2000). Fisica. Con fisica moderna, Douglas C. Giancoli, terza edizione, 2017 (based on 7th edition "Physics.
edizione, 2017 (based on 7 th edition "Physics. Principles with applications", 2014).