

Fakultät für Ingenieurwesen unibz Facoltà di Ingegneria Faculty of Engineering

COURSE DESCRIPTION – ACADEMIC YEAR 2024/2025

Course Title	Optimization
Course Code	42169
Scientific Sector	MAT/09
Degree	Bachelor of Engineering
Semester	2
Year	2+
Credits	6
Modular	No

Total Lecturing Hours	40
Total Lab Hours	20 (Exercise + Lab)
Attendance	Highly recommended (not compulsory)
Prerequisites	The students should be familiar with the basic concepts of linear algebra and calculus.
Course Page	

Lecturer Contact Scientific Sector of Lecturer Teaching Language Office Hours Lecturing Assistant Contact LA Office Hours LA	Saman Babaie–Kafaki https://www.unibz.it/en/faculties/engineering/academic-staff/person/48578-saman-babaiekafaki B1.5.12: Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bolzano, Italy Mathematics English 20+ Hours during the semester (can be set by appointment)
List of Topics	 Mathematical Preliminaries Practical Optimization Models Optimality Conditions for Unconstrained Optimization Least Squares Models First Order Algorithms Second Order Algorithms Convexity and Convex Optimization Optimality Conditions for Linearly Constrained Problems The KKT Conditions Duality Theory Topics in Data Mining and Regression Analysis
Teaching Format	Lectures + Exercices + Software Lab

Learning Outcomes	Intended Learning Outcomes (ILO)		
	 Knowledge and Understanding: 1. Knowledge of the main concepts of the optimization theory 2. Understanding of the analytical origins of the optimization algorithms 3. Knowledge of the optimization applications in data mining and machine learning 		
	 Applying Knowledge and Understanding: 4. Ability to formulate some real-world problems in the framework of the optimization models 5. Ability to deal with some problems in the fields of data mining and machine learning 		
	Making Judgments:6. Ability to evaluate reliability of the optimization models7. Ability to assess efficiency of the optimization algorithms		
	 Communication Skills: 8. Ability to interpret different parts of the classic optimization models 9. Ability to analyse performance of the optimization algorithms based on the computational results 10. Ability to conduct post-optimal analysis 		
	 Learning Skills: 11. Ability to modify classic optimization models for specific real-world problems 12. Capability to adapt classic optimization algorithms for high-dimensional optimization models 13. Ability to design (use) software to solve the practical optimization models 		
Assessment	Formative Assessments: This part is carried out by assigning weekly exercises		

Assessment	 Formative Assessments: This p to the students, which are als course. Summative Assessments: Stu final exam, which includes: A written exam; A n oral exam; A course project. The detailed structure of the assessments: 	so helpful in dents' knov ssment is gi	in understandin vledge is also vven in the foll	owing table.
	Assessment Format			
	Assessment Form	Weight	Duration	ILOs Assessed
	Weekly Exercises	40%		1-12
	Final Exam: Computation	40%	≥ 2 Hours	5, 6, 7, 9, 10
	Final Exam: Theory	20%	≤ 1 Hour	1, 4
	Oral Exam (Optional)			2, 8
	Course Project (Optional)			3, 11, 12, 13
Assessment Language	English			

Evaluation Criteria and Criteria for Awarding Marks	 Weekly Exercises: Certain exercises are assigned to students each week (approximately), which are closely connected to the course contents of the corresponding week. The answers should be submitted within about one week. Final (Written) Exam: The main part of the final exam is devoted to numerical problems in which the students should implement the algorithmic approaches for certain problems. In addition, there are theoretical problems in which the students should analyze the convergence behavior of the algorithms, discuss special aspects of the mathematical models, or evaluate the accuracy of the solutions. Oral Exam: Students can decide to take part in an oral exam in which their comprehension of the general concepts of the course is evaluated. Course Project: The students are encouraged to address a well-known real-world problem to enhance their practical experience with optimization models. The project should be presented, and its written report should also be submitted. 		
Required Readings	- Amir Beck, <i>Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB</i> , SIAM, 2014. https://sites.google.com/site/amirbeck314/books		
Supplementary Readings	- Jorge Nocedal and Stephen J. Wright, <i>Numerical Optimization</i> , Springer, 2006. - Neculai Andrei, <i>Modern Numerical Nonlinear Optimization</i> , Springer, 2022.		
Software	MATLAB		