

## Syllabus Course description

| Course title               | <b>Optimization methods for decision making</b><br>M1 Optimization methods for economics and business<br>M2 Data science applications for resource optimization, risk |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course code                | evaluation and sustainability 27511                                                                                                                                   |
| Course code                |                                                                                                                                                                       |
| Scientific sector          | MAT/06 + SECS-S/01                                                                                                                                                    |
| Degree                     | Master in Data Analytics for Economics and Management                                                                                                                 |
| Semester and academic year | 1 <sup>st</sup> and 2 <sup>nd</sup> semester                                                                                                                          |
|                            | a.y. 2024/2025                                                                                                                                                        |
| Year                       | 2 <sup>nd</sup> study year                                                                                                                                            |
| Credits                    | 12 (6+6)                                                                                                                                                              |
| Modular                    | Yes                                                                                                                                                                   |

| Total lecturing hours | 72 (36+36)                                                                                                 |
|-----------------------|------------------------------------------------------------------------------------------------------------|
| Total lab hours       |                                                                                                            |
| Total exercise hours  | /                                                                                                          |
| Attendance            | suggested, but not required                                                                                |
| Prerequisites         |                                                                                                            |
| Course page           | https://www.unibz.it/en/faculties/economics-<br>management/master-data-analytics-economics-<br>management/ |

| Specific educational<br>objectives | Develop advanced knowledge w.r.t. optimization methods to support decision making without and with uncertainty.                                                                         |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | Develop knowledge on advanced statistical models and techniques for analyzing data under conditions of uncertainty.                                                                     |
|                                    | Develop skills related to the representation of different types<br>of data commonly used in economics and/or business, such<br>as time series and spatio-temporal data.                 |
|                                    | Develop skill to select appropriate optimization models such<br>as linear/nonlinear, deterministic/stochastic, single/multi-<br>criteria for decision making in economics and business. |
|                                    | Develop skills to select appropriate solution methods/techniques for optimization problems within an economic/business environment and interpret the results.                           |



|                                   | Develop technical and practical knowledge to support decision-making in economic-financial institutions and enterprises.                                                                                                                                                                                                             |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 1                          | M1 Optimization methods for economics and business                                                                                                                                                                                                                                                                                   |
| Lecturer                          | Andreas Hamel<br>Andreas Heinrich Hamel / Libera Università di Bolzano<br>(unibz.it)                                                                                                                                                                                                                                                 |
| Scientific sector of the lecturer | Secs-S/06                                                                                                                                                                                                                                                                                                                            |
| Teaching language                 | English                                                                                                                                                                                                                                                                                                                              |
| Office hours                      | please refer to the lecturer's timetable                                                                                                                                                                                                                                                                                             |
| Lecturing assistant               | None                                                                                                                                                                                                                                                                                                                                 |
| Teaching assistant                | None                                                                                                                                                                                                                                                                                                                                 |
| List of topics covered            | <ul> <li>Linear optimization techniques</li> <li>Nonlinear optimization techniques</li> <li>Combinatorial optimization techniques</li> <li>Multicriteria optimization and decision making</li> <li>Decision making under uncertainty</li> </ul>                                                                                      |
| Teaching format                   | Frontal lectures, exercises and case studies. The course will combine in-class explanation, problem-solving and case study discussion.                                                                                                                                                                                               |
| Module 2                          | M2 Data science applications for resource optimization, risk evaluation and sustainability                                                                                                                                                                                                                                           |
| Lecturer                          | 18 h Davide Ferrari<br><u>Davide Ferrari / Libera Università di Bolzano (unibz.it)</u><br>18 h Giulia Bertagnolli<br>Giulia Bertagnolli / Libera Università di Bolzano (unibz.it)                                                                                                                                                    |
| Scientific sector of the lecturer | SECS-S/01                                                                                                                                                                                                                                                                                                                            |
| Teaching language                 | English                                                                                                                                                                                                                                                                                                                              |
| Office hours                      | please refer to the lecturer's timetable                                                                                                                                                                                                                                                                                             |
| Lecturing assistant               | None                                                                                                                                                                                                                                                                                                                                 |
| Teaching assistant                | None                                                                                                                                                                                                                                                                                                                                 |
| Office hours                      | -                                                                                                                                                                                                                                                                                                                                    |
| List of topics covered            | <ul> <li>Spatio-temporal data and their visualization</li> <li>Measuring association and risk: covariance, spatial covariance and autocovariance</li> <li>Spatio-temporal statistical models, trend-surface estimation and prediction</li> <li>Tail dependence, multivariate models for extremes, extreme risk management</li> </ul> |



|                   | <ul> <li>Real data applications in resource and risk<br/>management</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Teaching format   | Frontal lectures, exercises, computer labs, face-to-face discussions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Learning outcomes | 1) <u>Knowledge and understanding</u> :<br>The student acquires knowledge of optimization models and<br>statistical techniques needed to understand and analyze<br>economic and business phenomena from the quantitative<br>viewpoint in order to support decision-making processes.<br>The student acquires in-depth knowledge of advanced<br>statistical methods by developing programming skills and<br>focusing on applications to economic and business data.<br>Moreover, the student develops an understanding which<br>model is appropriate for a particular economic/managing<br>problems and which are appropriate solution methods. |
|                   | 2) <u>Applying Knowledge and understanding</u> :<br>The student acquires the ability to apply and implement<br>optimization methods focusing on different types of data and<br>interpretation of results. These skills are declined in various<br>application domains of interest to companies and public and<br>private organizations.                                                                                                                                                                                                                                                                                                        |
|                   | 3) <u>Making judgments</u> :<br>The student acquires the ability to choose appropriate<br>optimization models and statistical methods for data-based<br>decision making and also judge the validity of the<br>quantitative outcome w.r.t. correctness and relevance for<br>the underlying economic/management problem.                                                                                                                                                                                                                                                                                                                         |
|                   | 4) <u>Communication skills</u> :<br>The student acquires the ability to communicate effectively<br>the results from statistical analyses of observed data, also<br>through self-guided project work and the presentation of the<br>results.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | 5) <u>Learning skills</u> :<br>The course is aimed to provide the methodological and<br>applied knowledge of mathematical optimization methods<br>under uncertainty, necessary to address subsequent studies,<br>including advanced courses in mathematics, statistics,                                                                                                                                                                                                                                                                                                                                                                        |



|                                                        | computer science, as well as applied projects in laboratories<br>and internships, and empirical analyses in the final thesis.                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment                                             | <ul> <li>M1 Optimization methods for economics and business</li> <li>A written exam and a project presentation including an oral presentation.</li> <li>M2 Data science applications for resource optimization, risk evaluation and sustainability</li> <li>Written exam: combination of multiple choice and essay questions. Project work: development of an individual project related to the methodologies studied, their implementation in statistical software, and their applications to empirical data.</li> </ul> |
| Assessment language                                    | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Evaluation criteria and<br>criteria for awarding marks | <ul> <li>M1 Optimization methods for economics and business</li> <li>The written exam of 1 hour counts 50%, the project 50% towards the final grade. Evaluation criteria are understanding of modeling features, capability of applying solution methods (only small scale for the written exam) problems and the capability to interpret/discuss the results w.r.t. economic/managerial decision making.</li> <li>M2 Data science applications for resource optimization, risk evaluation and sustainability</li> </ul>  |
|                                                        | To pass the M2 module exam students must obtain a positive evaluation on both final exam (50% of the grade) and project (50% of the grade).                                                                                                                                                                                                                                                                                                                                                                               |
|                                                        | The final exam assess Skill 1 (Knowledge and understanding), while the project work and presentation aims at assessing Skills 2, 3 and 4 (Applying knowledge and understanding, Making judgements, Communication skills). Skill 5 is indirectly verified through the autonomous execution of class tasks and individual study required to pass the written exams.                                                                                                                                                         |
| Required readings                                      | ТВА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Required readings      | ТВА |
|------------------------|-----|
| Supplementary readings | ТВА |