Syllabus

Course Description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Molecular Techniques in Food Technologies: from Biotechnology to Authenticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>44725</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>AGR/13</td>
</tr>
<tr>
<td>Degree</td>
<td>Master in Food Sciences for Innovation and Authenticity</td>
</tr>
<tr>
<td>Semester</td>
<td>I</td>
</tr>
<tr>
<td>Year</td>
<td>II</td>
</tr>
<tr>
<td>Academic year</td>
<td>2023/24</td>
</tr>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
</tbody>
</table>

Total lecturing hours	18
Total lab hours	12
Total exercise hours	

Attendance

Prerequisites: Basic knowledge of genetics and molecular biology

Specific Educational Objectives

The course belongs to the area of learning that is affine to the Study Course (area affine integrativa) and specifically in the context of the disciplines of Food Sciences. The aim of the course is to provide students with an adequate mastership of general scientific principles at the base and methods exploited within this discipline as well as some specific professional knowledge. The aim of the course is to give an overview of the up-to-date molecular methods used to assess the authenticity of foodstuff, further completed with the analyses of case studies published in the literature. In particular, it is expected that the student acquires knowledge on the different molecular methods available and the specific characteristics of each one, so that he/she could become an autonomous user.

Lecturer

Youry Pii
Office: K0.09
e-mail: youry.pii@unibz.it
Phone: +390471017164
https://www.unibz.it/en/faculties/sciencetechnology/academic-staff/person/33704-youry-pii

Scientific Sector of the Lecturer

AGR/13

Teaching Language

English
<table>
<thead>
<tr>
<th>Office hours</th>
<th>From Monday to Friday upon appointment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching assistant (if any)</td>
<td></td>
</tr>
<tr>
<td>Office hours</td>
<td></td>
</tr>
</tbody>
</table>
| List of topics covered | - Food authenticity: definition, quality and safety certifications, geographical indications.
- Food frauds.
- Analytical Chemistry methods for food traceability and authenticity.
- DNA-based methods for food authenticity:
 1. Introduction to DNA structure.
 2. DNA extraction methods: qualitative and quantitative assessments.
 3. The use of molecular markers for DNA profiling: hybridization-based markers and PCR-based markers.
 - Restriction Fragment Length Polymorphism (RFLP)
 - PCR, Touch-Down PCR, Nested PCR
 - PCR-RFLP
 - Random Amplified Polymorphic DNA (RAPD)
 - Amplified Fragment Length Polymorphism (AFLP)
 - Inter simple Sequence Repeats (ISSR)
 - Real Time PCR
 - High Resolution Melting Analysis (HRMA)
 - Digital PCR (dPCR)
 - Arrays |
| Teaching format | The course consists of lectures (18 hours of frontal lectures) during which the different topics will be presented and discussed. Practical lessons and laboratory activities (12 hours), conducted by the Teacher, are also foreseen. Course topics will be presented using Power Point presentations; all the Power Point presentations will be given to the students. |
| Learning outcomes |
 o Knowledge and understanding
 Students will acquire knowledge about the main omics technology applied for food authenticity.
 o Applying knowledge and understanding
 Students will be able to understand the basis of the omics techniques and they will be able to judge which method should be applied in specific cases.
 o Making judgements
 The knowledge acquired will allow students to make judgements and to manage the basis of methods applied in food authenticity.
 o Communication skills |
Students will acquire the ability to describe authenticity issues related to the agrifood chain processes and the technologies.

- **Learning skills**
 Students will acquire the skills and expertise to widen and to update their knowledge about the contents and the topics discussed within the course.

Assessment
Oral and lab.
The final assessment will consist in an oral exam, which will consist in a) questions to evaluate the knowledge and the understanding of the topics discussed during the classes and b) questions aimed at establishing the ability to apply such knowledge to hypothetical case studies.
The ability to rework the experience acquired during laboratory exercises will also be evaluated.

Assessment language
English

Evaluation criteria and criteria for awarding marks
The final mark will be awarded based on the following criteria: the clarity of the response, the ability to summarize, evaluate, and establish relationships between topics.

Required readings

Supplementary readings
Scientific papers suggested by the lecturer during lectures