COURSE DESCRIPTION - ACADEMIC YEAR 2023/2024

<table>
<thead>
<tr>
<th>Course title</th>
<th>Programming and Visualisation for Data Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>27500 (loaned from course 73062)</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>INF/01</td>
</tr>
<tr>
<td>Degree</td>
<td>Master in Data Analytics for Economics and Management (LM-Data) (loaned from Master in Computing for Data Science (LM-18))</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
</tr>
<tr>
<td>Credits</td>
<td>12</td>
</tr>
<tr>
<td>Modular</td>
<td>Yes</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>80</td>
</tr>
<tr>
<td>Total lab hours</td>
<td>40</td>
</tr>
<tr>
<td>Attendance</td>
<td>Not compulsory. Non attending students have to agree with the lecturer on the modalities of independent study at the beginning of the course.</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Basic programming concepts</td>
</tr>
<tr>
<td>Course page</td>
<td>https://ole.unibz.it/ and https://teams.microsoft.com/</td>
</tr>
<tr>
<td>Specific educational objectives of the course</td>
<td>The course belongs to the type "caratterizzanti - discipline informatiche".</td>
</tr>
</tbody>
</table>

Module 1: Introduction to programming for data science

The course is designed to provide specific professional skills. The students will learn how to organize and analyze data by writing programs, using the Python programming language. More specifically, the students will practically learn to import, manipulate, analyze, visualize, and model a dataset. The students will also get familiar with libraries that can be effectively used for data analytics.

Module 2: Data Visualization and Exploration

The course is designed to acquire professional skills and knowledge useful when exploring datasets. In particular, the student will be able to visualize datasets choosing the most appropriate technique for the data at hand, and will be able to get insights from the data supported by the visualizations, using basic statistical tools. The student will also learn to avoid the common pitfalls in visualization that can mislead the analysis. Visualization and data handling are done using the R programming language, following the best practices of reproducible research.
Contact
- **antonio.liotta@unibz.it**

Scientific sector of lecturer
- **ING-INF/05**

Teaching language
- **English**

Office hours
- Arranged beforehand by email

Lecturing assistant (if any)
- --

Contact LA
- --

Office hours LA
- --

Credits
- **6**

Lecturing hours
- **40**

Lab hours
- **20**

List of topics
- Languages for programming data and data visualization
- Integrated Development Environments for Data Science
- Data wrangling, cleaning, and preprocessing
- Advanced libraries for linear algebra and statistics
- Data science pipelines, from data ingestion to models and analysis
- Model tuning, validation, and testing

Teaching format
- Frontal lectures, lab assignments, project work.

Module 2

Data Visualisation and Exploration

Module code
- **27500B**

Module scientific sector
- **INF/01**

Lecturer
- **Ozan Kahramanogullari**

Contact
- **ozan.kahramanogullari@unibz.it**

Scientific sector of lecturer
- **INF/01**

Teaching language
- **English**

Office hours
- Arranged beforehand by email

Lecturing assistant (if any)
- --

Contact LA
- --

Office hours LA
- --

Credits
- **6**

Lecturing hours
- **40**

Lab hours
- **20**

List of topics
- Reproducible analysis practices
- Human perception for effective visualization
• Data types and visual encodings
• Visualization idioms
• Exploratory data analytics, data exploration, and feature engineering
• Advanced libraries for data visualization

Teaching format
Frontal lectures, lab assignments, project work.

Learning outcomes

1) Knowledge and understanding:
- Knowledge of the key concepts and technologies of data science disciplines
- Understanding of the skills, tools and techniques required for an effective use of data science
- Knowledge of principles, methods and techniques for processing data in order to make them usable for practical purposes, and understanding of the challenges in this field
- Knowledge of the challenges in the field of man-machine interface and of the methods and techniques for overcoming these challenges

2) Applying knowledge and understanding:
- Practical application and evaluation of tools and techniques in the field of data science
- Ability to develop programmes and use tools for the analysis and management of data and related infrastructures
- Practical application and evaluation of tools and techniques for data analysis
- Design, application and evaluation of technologies and tools for human-machine interaction, data exploration and data visualization

3) Making judgments
- Ability to autonomously select the documentation (in the form of books, web, magazines, etc.) needed to keep up to date in a given sector.

4) Communication skills
- Ability to use English at an advanced level with particular reference to disciplinary terminology
- Ability to present one’s work in a clear and comprehensible way in front of an audience, including non-specialists
- Ability to structure and draft scientific and technical documentation

4) Learning skills
- Ability to deal with problems in a systematic and creative way and to appropriate problem solving techniques.

Assessment
The exam modalities are the same for both the attending and the non-attending students.

Project work (70% of the final grade) and final exam (30% of the final grade).
All project works must have been submitted, at the very latest, 15 days ahead of the oral exam.
In case of a positive mark, the projects will count for all 3 regular exam sessions.

The final exam aims at verifying skill 1 (Knowledge and understanding). The project work allows to verify skills 2, 3 and 4 (Applying knowledge and understanding, Making judgements, Communication skills). The skill concerned with autonomous study (5, Learning skills) is indirectly verified, because passing the final exam is possible through the autonomous execution of exercises suggested by the lecturer and individual participation in class activities.
<table>
<thead>
<tr>
<th>Assessment language</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation criteria and criteria for awarding marks</td>
<td>70% project work, 30% oral exam.</td>
</tr>
<tr>
<td></td>
<td>• Relevant for project work: clarity of presentation, ability to gain useful and novel insights from data, creativity, critical thinking, ability to adhere to reproducible research best practices</td>
</tr>
<tr>
<td></td>
<td>• Ability to use R software to perform basic data preparation tasks, ability to properly use R plotting facilities, ability to summarize the concepts of the Grammar of Graphics and of human perception, ability to choose the best type of graphical representation for different types of data, correct usage of basic statistical tools</td>
</tr>
<tr>
<td></td>
<td>• Ability to use Python to employ (understand, recall and use) data analytics methods in practical settings, from data collection and curation, to data analysis and visualization.</td>
</tr>
</tbody>
</table>

Required readings	• *Data Visualization. A practical introduction.* Haley. Available online
	• *R for Data Science.* Wickham. Available online
	• *A layered grammar of graphics.* Wickham. Available online
	Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it

Supplementary readings	• *Fundamentals of Data Visualization.* Wilke. Available online
	• *Visualization Analysis and Design.* Munzer. Amazon
	• *Data Visualization: Charts, Maps, and Interactive Graphics.* Grant. Amazon

| Software used | • Rstudio https://www.rstudio.com/ |
| | • Jupyter Notebook (for Python programing) |