

COURSE DESCRIPTION – ACADEMIC YEAR 2023/2024

Course title	Physics II
Course code	42404
Scientific sector	FIS/01
Degree	L8 – Bachelor in Electronics and Cyber-Physical Systems Engineering
Semester	II
Year	Ι
Academic year	2023/24
Credits	9
Modular	No

Total lecturing hours	54
Total exercise hours	36
Attendance	Recommended
Prerequisites	Physics I, Mathematical Analysis I, and Coometry
Lecturer	Professor Franco Cacialli Office: Building K, Room 2.04 e-mail: franco.cacialli@unibz.it tel. 0471 017119 <u>https://www.unibz.it/en/faculties/engineering/academic- staff/person/47601-franco-cacialli</u>
Lecturing assistant	Dr. Manuela Ciocca
Contact LA	Office: Via Museo 54, Room 307 e-mail: manuela.ciocca@unibz.it

r	
Office hours LA	on appointment via mail
Specific educational	The student should understand the basic principles of
objectives	electrostatics, electrodynamics, magnetism, optics, and
	elementary quantum mechanics as well as be able to apply
	them.

Learning outcomes	1. Knowledge and understanding Knowledge and basic understanding of physical laws:
	 Fundamentals of atomic structures Electrostatics Electrodynamics Magnetism Optics Fundamentals of quantum mechanics
	2. Applying knowledge and understanding Students are expected to develop the ability to explain physical phenomena, systems and components based on the concepts learned in the course

	3. Making judgements Students are expected to develop the ability to give explanations of physical phenomena, systems or devices basing their explanation on the concepts learned in the course.
	4. Communication skills Maturing of technical-scientific terminology.
	5. Ability to learn
	Development of an analytic attitude leading the student to
	decompose a problem in sub-tasks which can be solved with the knowledge already acquired, and the ability to acquire knowledge beyond this course.
List of topics covered	1. Fundamentals of atomic structure orbitals
	2. Electrostatics: Charge, Coulomb, electric field, electric
	potential, capacity, dielectrics, permittivity
	3. Electrical current: Ohm's law; resistance; Joule's effect;
	power; direct/alternating current; electrical circuits; Kirchhoff's laws
	4. Magnetostatics: magnetostatic field: magnetic
	induction; Lorentz's forces; Ampère's laws; magnetic
	dipoles; magnetic energy.
	5. Magnetodynamics (Faraday-Lenz; self-induction
	Inductance, Electromagnetic Oscillations, and AC
	and magnetic orbital momentum in atoms
	6. Electrodynamics: Maxwell's equations and e.m. waves
	7. Optics: Light and its properties (reflection, refraction,
	diffraction and interference
	8. Failure of classical mechanics I: Photoelectric, and
	Compton effect effects and early Q.M. Photon (E,
	momentum). Wave nature of matter, Bonr atom, De Broglie hypothesis, early models of the atom
	9. Quantum Mechanics: wavefunction. Heisenberg
	Uncertainty Principle, 1D Schroedinger equation
	(particle in a box and tunnelling). Quantization of the
	angular momentum. Quantum mechanics of the atom.
	Pauli Exclusion Principle. Bloch Theorem. Model of
	kronig and Penney.

Assessment	Formative assessment		
	Form	Details	ILOs assessed
	In-class exercises	Continuously as part of the course problem	1-5

	Summative assessment			
	Form	Details	ILOs assessed	
	Written	Closed-book exam	1-5	
	Oral	Ouestions on theory,	1-5	
		problems solution		
Assesment Language	English			
Evaluation criteria and criteria for awarding marks	The exam includes a written and an oral component. The written exam consists of two parts: a first part (problem 1) with a series of (mostly) qualitative questions based on the understanding of the topics covered in the lectures, as well as a second part (problems 2-5) consisting of several numerical or symbolic problems to be solved related to the various topic covered in the lectures.			
	Grading will - The step resu units - The pres	be based upon: correctness of the approach and s of the solution, the calculation Its and the correct use of physic s. correctness of the provided ans ented, as well as the terminolog	d the mathematical of numerical cal quantities and swers and of the gy used.	
	To pass the exam the final grade must be greater or equal to 18. If the final score is greater than 30, a "with honors" grade is awarded.			
	The student can have access to the exam with pen, pencil and a portable calculator. A short list of constants is provided to the students along with the text of the exam. Students should also be able provide proof of identity (e.g. Campus card, ID card, passport) before the start of the exam.			
	The oral exa covered in t the exam), grade of the Students sh Campus car	am will include questions on the he lectures (including those of t and may lead to an increase or e written component. ould also be able provide proof d, ID card, passport) before the	e programme the written part of a reduction of the of identity (e.g. e start of the exam.	
Desulved yes dia as	Dia aldara di		6	
kequirea reaaings	BIACKDOARD	/ Lecture notes / Selected readi	ngs from	
	Physics for S	Scientists and Engineers with M	odern Physics,	
	Douglas C.	Giancoli, Pearson, 4 th edition, 2		
	Also availab	le in electronic format (pdf) froi	m UNIBZ library.	

unibz

Supplementary readings	Physics for Scientists and Engineers with Modern Physics,
	Douglas C. Giancoli, Pearson, 4 th edition, 2008.
	Other languages:
	1. Physik, Douglas C. Giancoli, Pearson Studium, Pearson Deutschland GmbH, 3rd edition, 2010 (based on 3 rd edition "Physics for scientists and engineers with modern physics" 2000)
	 Fisica. Con fisica moderna, Douglas C. Giancoli, terza edizione, 2017 (based on 7th edition "Physics. Principles with applications", 2014).