Syllabus
Course title: Flexible Electronics: From Materials to Systems and Applications

Course code: 46060
Scientific sector: ING-INF/01
Degree: PhD in Advanced Systems Engineering
Semester: 1
Year: 1
Academic year: 2023/2024
Credits: 3
Modular: No

Total lecturing hours: 30
Attendance: Preferred
Prerequisites: None
Course page: None

Specific educational objectives:
The course is a specialized course in the interdisciplinary area of physics, material science, chemistry, biology, biotechnology, and electronics, addressing the implementation of flexible electronics technologies. It is designed to acquire knowledge in flexible electronics device technology, from materials and fabrication processes, to devices, systems, and applications, including state of the art and the status of commercialization.

The specific educational objectives are to:
- Acquire basic understanding and knowledge of printing and microfabrication technologies.
- Acquire basic understanding and knowledge of device operation mechanisms (especially for what concerns thin-film transistors and transistor-based sensors).

Lecturer: Luisa Petti
Scientific sector of the lecturer: ING-INF/01
Teaching language: English
Office hours: From Monday to Friday, on appointment

List of topics covered:
1. Flexible electronics: general introduction
 - Historical background
 - Materials, devices, systems, applications
 - Fabrication techniques
 - Unique aspects, status in the field and trends

2. Thin-film microfabrication techniques
- Basics and fundamentals
- Deposition and structuring methods

3. Printing techniques
- Basics and fundamentals
- Fluid formation and rheology for printing
- Inks and printing techniques
- Additional coating and structuring methods

4. Thin-film transistors and circuits
- Thin film transistors (TFTs)
 - Device operation, materials, and structures
 - Device characterization and performance
 - UNIBZ’s case study: sub-micrometer Indium-Gallium-Zinc-Oxide TFTs and spray-coated carbon nanotube TFTs
- Thin film circuits
 - From transistors to circuits
 - Digital and analog circuits

5. From thin-film transistors to biosensors
- Transistors-based sensors
 - Principles and fundamentals
 - Examples
 - Unibz’s case study: electrolyte-gated field effect transistors and organic electrochemical transistors

6. Applications
- Examples applications from academia and industry

<table>
<thead>
<tr>
<th>Teaching format</th>
<th>Digital format (provided on teams) divided in:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Theoretical lectures using:</td>
</tr>
<tr>
<td></td>
<td>- Slides</td>
</tr>
<tr>
<td></td>
<td>- Videos</td>
</tr>
<tr>
<td></td>
<td>- Practical exercises:</td>
</tr>
<tr>
<td></td>
<td>- Use of softwares (e.g., Origin, Corel) for data analysis and plotting.</td>
</tr>
<tr>
<td></td>
<td>- Projects & assignments:</td>
</tr>
<tr>
<td></td>
<td>- Informal discussions on presentations and scientific papers</td>
</tr>
<tr>
<td></td>
<td>- Preparation of short papers based on literature review</td>
</tr>
<tr>
<td>Learning outcomes</td>
<td>Knowledge and understanding: theoretical know-how on printing, microfabrication, and characterization technologies for electronic components.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Applying knowledge and understanding: practical know-how on printing, microfabrication, and characterization technologies for electronic components.</td>
</tr>
<tr>
<td></td>
<td>Making judgments: Capability of identifying the most suitable fabrication and characterization methods to realize specific electronic devices for a given targeted application.</td>
</tr>
<tr>
<td></td>
<td>Communication skills: ability to give a specialized technical presentation supported by power-point slides.</td>
</tr>
<tr>
<td></td>
<td>Learning skills: performing a literature review on a given topic; extracting the most valuable information and embedding it in a presentation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment</th>
<th>A project work developed by the student will be assessed: presentation and discussion of a topic related to the contents of the course agreed between lecturer and students.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment language</td>
<td>English</td>
</tr>
<tr>
<td>Evaluation criteria and criteria for awarding marks</td>
<td>Quality of the presentation and engagement in the practical project.</td>
</tr>
</tbody>
</table>

Required readings

Supplementary readings

- Assigned in class

Bibliography: