

Syllabus Descrizione del corso

Titolo del corso	Fondamenti di Elettronica
Codice del corso	42406
Settore scientifico disciplinare del corso	ING-INF/01
Corso di studio	Corso di Laurea in Ingegneria elettronica e dei Sistemi ciberfisici
Semestre	2 nd
Anno del corso	I
Anno accademico	2023/24
Crediti formativi	6 CFU
Modulare	No

Numero totale di ore di lezione	36
Numero totale di ore di	24 (12 Esercizi + 12 Laboratori)
laboratorio	
Frequenza	Consigliata
Corsi propedeutici	Analisi Matematica I, Algebra Lineare, Fisica I
Sito web del corso	

Docenti del corso	Prof. Luisa Petti (Luisa.Petti@unibz.it)
Settore scientifico dei	ING-INF/01
docenti	
Lingua d'insegnamento	Italiano
Orario di ricevimento	Prof. Luisa Petti: su richiesta
Teaching assistant	Dr. Giuseppe Ciccone + Mr. Moritz Ploner

Lista degli argomenti trattati	Il corso si propone di fornire agli studenti le nozioni fondamentali dei circuiti elettronici. In particolare, vengono trattati argomenti quali l'analisi di circuiti elementari in condizioni stazionarie e transitorie, e alimentati da segnali sinusoidali. Inoltre vengono illustrate le basi dei circuiti con amplificatori operazionali.
	Gli argomenti trattati comprendono: - Fondamenti di elettrotecnica: grandezze elettriche, concetto di bipolo e quadripolo; generatori ideali e reali; leggi di Kirchhoff. - Bipoli e circuiti adinamici: bipoli resistivi; legge di Ohm; modelli di Thevenin e Norton; analisi nodale dei circuiti, principio di sovrapposizione. - Bipoli e circuiti dinamici: bipoli dinamici; circuito del primo e del secondo ordine. - Analisi di circuiti sinusoidali: sovrapposizione, circuiti multifrequenziali; modelli di Thevenin e Norton; analisi nodale; potenza. - Biporta: elementi; connessioni; analisi di circuiti biporta sia in regime adinamico che sinusoidale. - Amplificatori operazionali: principi; connessioni; analisi di circuiti con amplificatori operazionali sia in regime adinamico che sinusoidale.

Obiettivi formativi specifici del	Conoscenza e comprensione	
corso		

Lo studente conosce il concetto di modello di circuito e i suoi componenti fondamentali, cosi come le leggi e i teoremi fondamentali (compresi i loro limiti di validità) necessari per analizzare un circuito.
Applicazione della conoscenza e della comprensione Lo studente è in grado di utilizzare le conoscenze acquisite per creare modelli di circuiti ed analizzarli.
Formulare giudizi
Lo studente è in grado di selezionare tra i vari strumenti messi a disposizione dal corso quelli più adatti al raggiungimento degli obiettivi in termini di modellazione e analisi di circuiti.
Abilità comunicative Lo studente è in grado di esporre le competenze acquisite con un lessico appropriato all'argomento.
Capacità di apprendimento Lo studente è in grado di utilizzare gli strumenti e le tecniche di ragionamento acquisite per ampliare le proprie conoscenze.

Modalità d'esame Lingua d'esame	Esame scritto e orale, con valutazione scritta "in itinere" Italiano
Critieri di valutazione e di assegnazione del voto	 I criteri di valutazione saranno: l'accuratezza delle risposte date all'esame scritto, con particolare attenzione alla procedura di risoluzione adottata e la correttezza formale della stessa. l'accuratezza delle risposte date all'esame orale, con particolare attenzione alla terminologia usata.

Bibliografia	"Circuiti elettrici", Charles K. Alexander, Matthew Sadiku, Giambattista Gruosso,	
fondamentale	Giancarlo Storti Gajani.	

Syllabus Course description

Course title	Basics of Electronics
Course code	42406
Scientific sector	ING-INF/01
Degree	Bachelor in electronic and cyber-physical systems engineering
Semester	2 nd
Year	Ι
Academic year	2023/24
Credits	6 CFU
Modular	No

Total lecturing hours	36
Total exercise hours	24 (12 Exercise + 12 Laboratory)
Attendance	Recommended
Prerequisites	Mathematical Analysis I, Linear Algebra, Physics I
Course page	

Lecturer	Prof. Luisa Petti (Luisa.Petti@unibz.it)
Scientific sector of the	ING-INF/01
lecturer	
Teaching language	Italian
Office hours	Prof. Luisa Petti: upon request
Teaching assistant	Dr. Giuseppe Ciccone + Mr. Moritz Ploner

Specific educational objectives	The course aims at providing students with the fundamental notions of electrical circuits. In particular, topics such as the analysis of elementary circuits under steady-state and transient conditions, and supplied by sinusoidal signals are covered. In addition, the basics of circuits with operational amplifiers are explained.
	 Topics covered in the subject include: Fundamentals of electrical engineering: electrical quantities, concept of bipole and quadripole; ideal and real generators; Kirchhoff's laws. Adynamic bipoles and circuits: resistive bipoles; Ohm's law; Thevenin's and Norton's models; nodal analysis of circuits, superposition principle. Bipoles and dynamic circuits: dynamic bipoles; first and second order circuits. Analysis of sinusoidal circuits: superposition, multifrequency circuits; Thevenin and Norton models; nodal analysis; power. Biport: elements; connections; analysis of biport circuits in both adynamic and sinusoidal regimes. Operational amplifiers: principles; connections; analysis of circuits with operational amplifiers in both adynamic and sinusoidal regimes.

Learning outcomes	Knowledge and understanding
	The student knows the concept of a circuit model and its
	fundamental components as well as the fundamental laws and

	theorems (including their limits of validity) necessary to analyze a circuit.
	Applying knowledge and understanding The student is able to use the knowledge acquired to create circuit models and analyze circuits.
	Making judgments The student is able to select from the various tools provided by the course those most suitable for achieving the objectives in terms of modeling and analysis of electrical circuits.
	Communication skills The student is able to present the competencies acquired with vocabulary appropriate to the topic.
	Learning skills The student is able to use the tools and reasoning techniques acquired to extend his/her knowledge.
Assessment	Written and oral exam, with written evaluation "in itinere"
Assessment language	Italian
Evaluation criteria and criteria	The evaluation criteria will be:
for awarding marks	 - the accuracy of the answers given in the written examination, with particular attention to the resolution procedure adopted and the formal correctness of the same. - The accuracy of the answers given in the oral examination, with

particular attention to the terminology used.