

1/4

COURSE DESCRIPTION – ACADEMIC YEAR 2023/2024

Course title Software Maintenance and Evolution

Course code 76064

Scientific sector INF/01

Degree Software Engineering for Information Systems (LM-18)

Semester 2

Year 2

Credits 6

Modular No

Total lecturing hours 40

Total exercise hours 20

Attendance Not compulsory

Prerequisites --

Course page https://ole.unibz.it/

Specific educational

objectives

The course belongs to the type "affine o integrative” – and is part of

Advanced Topics in Software / Systems Engineering.

Software systems can be in use for years, if not decades – extremely

prolonged periods during which they must be continuously updated in
response to changes in customer needs or other factors. The goal of

this course is to teach students basic and advanced techniques to

successfully evolve real-world software projects. The course will cover
the following key software maintenance and evolution activities:

o Concept location
o Impact analysis

o Actualization

o Refactoring
o Verification

The concepts seen during the lecture will be practiced through lab
assignments, based on manipulating large, established open-source

software.

Lecturer Jorge Augusto Melegati Goncalves

Contact Piazza Domenicani 3, Room 1.13, jorge.melegati@unibz.it,

Scientific sector of lecturer INF/01

Teaching language English

Office hours Tuesdays from 14h to 16h, previous appointment by email.

Lecturing Assistant (if any) --

Contact LA --

Office hours LA --

List of topics • Introduction to software maintenance and evolution

• Software Refactoring

• Mining software repositories

• Machine learning for software engineering

• Using software metrics to assess and monitor the quality of

software systems

https://ole.unibz.it/
https://www.unibz.it/it/faculties/computer-science/academic-staff/person/38636-jorge-augusto-melegati-goncalves
mailto:jorge.melegati@unibz.it

2/4

• Using textual analysis techniques in the context of software

maintenance and evolution

Teaching format Frontal lectures, paper presentations, in-class and lab exercises

Learning outcomes Knowledge and understanding

• D1.2 To be able to analyze and solve even complex problems

in the area of Software Engineering for Information Systems
with particular emphasis on the use of studies, methods,

techniques and technologies of empirical evaluation;

• D1.3 To know in depth the scientific method of investigation

applied to complex systems and innovative technologies that
support information technology and its applications;

• D1.8 To be able to read and understand specialist scientific

documentation, such as conference proceedings, articles in
scientific journals, technical manuals.

Applying knowledge and understanding

• D2.1 To know how to apply the fundamentals of empirical
analysis of ICT data to the construction of mathematical

models for the evaluation and prediction of characteristics of
applications and software systems;

• D2.3 To know how to apply the principles of software

engineering to domains of different complexity, both IT and
non-IT, in which software technology is of great importance,

such as, for example, in the transport sector or in the medical

field;

• D2.5 To be able to extend and modify in an original way an
existing technical solution or a formal model taking into

account changed conditions, requirements and evolution of
the technology.

Making judgments

• D3.2 To be able to plan and re-plan a technical project activity
and to carry it out in accordance with defined deadlines and

objectives;

• D3.3 To be able to define work objectives compatible with the
time and resources available;

• D3.4 To be able to reconcile the objectives of the project that

are in conflict, to trade-off cost, resources, time, knowledge
or risk.

Communication skills

• D4.1 To be able to present the contents of a
scientific/technical report to an audience, including non-

specialists, at a fixed time;

• D4.4 To be able to prepare and conduct technical
presentations in English;

• D4.6 To be able to carry out research and projects in

collaborative manner;

• D4.7 To be able to synthesize knowledge gained from reading

and studying scientific documentation.

Learning skills

3/4

• D5.1 To be able to independently extend the knowledge

acquired during the course of study by reading and
understanding scientific and technical documentation in

English;

• D5.3 In the context of a problem solving activity, to be able
to extend knowledge, even if incomplete, taking into account

the final objective of the project.

Assessment The assessment of the course consists of two parts:
• lab assessment, composed of assignments that should be

performed and delivered by the due date (50%);

• a final written exam (50%).

In case of a positive mark the lab assessment will count for all 3
regular exam sessions. The lab assignments must be delivered at least

one week before the final written exam, otherwise they cannot be

assessed, and the exam cannot be registered.  

Assessment language English

Assessment typology Monocratic commission

Evaluation criteria and

criteria for awarding
marks

The lab assignments will be assessed based on how students apply

the techniques seen in class.

Assignments could consist of presentation in class of papers

presenting state-of-the-art work in software maintenance and
evolution. In this case, they will be assessed based on the

understanding of the material presented in the papers, the clarity of
the presentation, and the ability to relate it to other topics seen during

the course. A positive evaluation on the lab assessment is required to
access the written exam.

The final written exam will be assessed based on the acquired

knowledge and the understanding of the material presented during
the course, the clarity of answers, mastery of language (also with

respect to teaching language), and the ability to summarize, evaluate,
and establish relationships between topics.

Required readings Lecture slides will be made available on the course website.

• Vaclav Rajlich, Software Engineering: The Current Practice

(Chapman & Hall/CRC Innovations in Software Engineering and

Software Development Series). ISBN: 1439841225

• Martin Fowler, Refactoring: Improving the Design of Existing

Code (Addison-Wesley Professional). ISBN: 0201485672

• Research papers, that might be recommended by the instructor

during the course, will be made available on the course website.

Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it

Supplementary readings • Robert C. Martin and Michael C. Feathers, Clean code: a

handbook of agile software craftsmanship. ISBN: 0136083226

mailto:David.Gebhardi@unibz.it

4/4

Additional resources will be made available on the course website on
an as-needed basis.

Software used The following list includes the most important tools that we will use in

the course:

• Eclipse DIE, IntelliJ IDEA, or Visual Studio Code

• Git

• Github

• SonarQube

