Syllabus
Course description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Renewable Energy and Meteorology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>45524</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>FIS/06 "Physics of the Earth and of the circumterrestrial medium"</td>
</tr>
<tr>
<td>Degree</td>
<td>Master Energy Engineering</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Year</td>
<td>OPT</td>
</tr>
<tr>
<td>Academic year</td>
<td>2023/2024</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>60</td>
</tr>
<tr>
<td>Total lab and exercise hours</td>
<td>Not mandatory, but strongly recommended</td>
</tr>
<tr>
<td>Attendance</td>
<td>Not mandatory, but strongly recommended</td>
</tr>
<tr>
<td>Recommended preliminary knowledge</td>
<td>Basic background of mathematics and physics usually acquired in a 3-year bachelor's degree in engineering or physics. Basic contents of meteorology will be provided in the first part of the course.</td>
</tr>
<tr>
<td>Connections with other courses</td>
<td>This course focuses on the atmospheric factors affecting the availability of renewable energy resources, as well as on the methodologies and techniques for their assessment and forecast. To this regard, the topics covered in this course can be useful for other courses dealing with the infrastructures and plants to exploit renewable energy resources and in particular: “Hydropower and Wind Power Systems”, “Solar Energy Systems” and “Environmental Fluid Mechanics/Hydropower Plants”. Basic knowledge of the factors affecting meteorological fields can also be useful for courses dealing with energy consumption in buildings for space heating/cooling, such as: “Advanced Applications of Building Physics”, “Building HVAC Systems” and “District Heating Systems Design”.</td>
</tr>
<tr>
<td>Course page</td>
<td>https://www.unibz.it/en/faculties/engineering/master-energy-engineering/course-offering/</td>
</tr>
</tbody>
</table>

Specific educational objectives
The course offers an overview of the main atmospheric factors affecting the processes controlling the availability and conversion of renewable energy sources. In particular, the course focuses on factors affecting solar radiation (season, weather, cloud cover, atmospheric scattering and absorption, orographic effects, urban effects, etc.) and wind (dynamical mechanisms, terrain effects, urban effects, vertical profile, etc.), as well as on the tools and instruments for assessing and forecasting their availability.
Lecturers
Prof. Lorenzo Giovannini

Scientific sector of the lecturers
FIS/06

Teaching language
English

Office hours
On appointment by email

Teaching assistant (if any)
-

Office hours
-

List of topics covered

Part I: Introduction to atmospheric processes
- Overview of the mean atmospheric properties (chemical composition, thermal structure)
- Scales of atmospheric motion
- Atmospheric thermodynamics
- Hydrostatic balance
- Atmospheric stability
- Atmospheric dynamics: synoptic-scale motion, geostrophic wind
- Mesoscale circulations: coastal breezes, mountain and valley winds

Part II: Solar radiation measurement and modelling
- Factors determining the solar radiation availability at the Earth’s surface
- Instruments for solar radiation measurements
- Models for the estimate of the solar radiation components under different meteorological conditions, and over horizontal and inclined surfaces
- Overview of the databases (solar atlases) presently available for the estimate of the solar resource at a specific site
- Overview of the different approaches to forecast solar radiation for energy-related applications
- Practical exercise solar resource assessment

Part III: Wind measurement and modelling
- Wind climatology: synoptic-scale winds, mesoscale circulations and local effects
- Monin-Obukhov similarity theory and dependence of the vertical wind profile on atmospheric stability
- Overview of the wind atlases presently available: strengths and weaknesses
- Instruments for wind measurements, correct siting of anemometers and planning of field measurements
- Tools and methodologies for wind resource assessment
- Analysis of wind data from experimental campaigns: relevant statistics for wind power assessment
- Introduction to meteorological models and techniques to forecast wind power production
- Practical exercise on wind resource assessment
Professional applications of the covered topics

The knowledge acquired through this course can be applied in the planning and management of renewable energy plants, with particular regard to solar and wind energy plants. Therefore, these competences can be exploited in companies operating plants and in societies providing meteorological and climate services for the energy sector.

Teaching format

The course is mainly based on class lectures. Lectures will be carried out both with blackboard demonstrations and with slides. Part of the course is dedicated to two practical exercises to apply methods and tools for the assessment of the solar and wind energy potential of a site.

Learning outcomes

Intended Learning Outcomes:

1. **Knowledge and understanding:** The students will learn the basics of atmospheric processes affecting renewable energy resources availability for the optimal planning and management of solar and wind energy plants.

2. **Applying knowledge and understanding:** The students will learn to use meteorological concepts, models and instruments for the assessment of the availability of renewable energy resources (especially solar radiation and wind).

3. **Making judgments:** The students will be able to identify the most appropriate information source, critically assess the quality of datasets and the uncertainty of the results from the application of meteorological data processing and modeling.

4. **Communication skills:** The students will learn the basic technical vocabulary and concepts of the discipline. Through the exercises the students will learn how to write a short technical report.

5. **Ability to learn:** The students will be stimulated to search for proper datasets and other useful information required to assess the availability of renewable energy resources. They will learn to critically evaluate and sort sources of data according to their use.

Assessment

Students are asked to prepare two written reports on the practical exercises on the assessment of solar and wind energy resources, that will be sent to the lecturer before the oral exam for evaluation. The reports will be then discussed during the oral exam. The oral exam also includes questions to assess the knowledge and the understanding of the topics of the course.

<table>
<thead>
<tr>
<th>Form</th>
<th>Length/duration</th>
<th>ILOs assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anonymous tests on the topics covered

- During the course, at the end of each module

Summative assessment

<table>
<thead>
<tr>
<th>Form</th>
<th>%</th>
<th>ILOs assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam - theory</td>
<td>50%</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>Written reports - practical exercises</td>
<td>50%</td>
<td>3,4,5</td>
</tr>
</tbody>
</table>

Assessment language

- English

Evaluation criteria and criteria for awarding marks

Oral exam at the end of the course, with the aim of evaluating the ability of the student to reproduce the topics of the course with critical reasoning. Moreover, students are required to prepare two written reports on the practical sessions proposed during the course. The reports are discussed during the oral exam. The final grade is the result of the evaluation of both the oral exam (50%) and the written reports (50%).

Required readings

- Slides provided to the students and notes taken by the students

Supplementary readings