Facoltà di Ingegneria

SYLLABUS COURSE DESCRIPTION - ACADEMIC YEAR 2023/2024

COURSE TITLE	Discrete Mathematics
COURSE CODE	76239
SCIENTIFIC SECTOR	MAT/01
DEGREE	Bachelor in Computer Science
SEMESTER	1 st
YEAR	1 st
CREDITS	6

TOTAL LECTURING HOURS	40
TOTAL LAB HOURS	20
ATTENDANCE	Attendance is not compulsory but recommended. Non-attending students have to contact the lecturer at the start of the course to agree on the modalities of the independent study.
PREREQUISITES	None.
COURSE PAGE	https://ole.unibz.it/

SPECIFIC	Type of course: "di base"
EDUCATIONAL	Scientific area: "matematico fisica"
OBJECTIVES	The aim of this course is to introduce students to basic topics in discrete
mathematics. An overview of proof methods and their relation to logic will	
be given. The induction principle is introduced in a number of variants, and	
methods to analyse and describe the main properties of relations, functions,	
graphs and trees will be studied. We will also introduce the basic crinciples	
governing the mathematical definitions of infinite sets and of countability.	

LECTURER	Oliver Kutz
SCIENTIFIC SECTOR OF THE LECTURER	INF/O1
TEACHING LANGUAGE	English
OFFICE HOURS	Wednesday $14.30-16: 30$, Office POS 303, Faculty of Computer Science, Piazza Domenicani 3, Oliver.Kutz@unibz.it, +39

Facoltà di Ingegneria

Faculty of Engineering

TEACHING ASSISTANT	Same as lecturer
OFFICE HOURS	To be confirmed and by email appointment
List of topics covered	- Elements of logic, propositions and quantifiers, methods of mathematical proof - Numbers and basic number theory - Set Theory, Russell Paradox and Halting Problem - Functions, infinite cardinalities and countability - Relations, orders, equivalence classes - Graphs and trees
TEACHING FORMAT	Frontal lectures; Exercises in Lab.

LEARNING OUTCOMES	Knowledge and understanding Have a solid knowledge of mathematical analysis, algebra, numerical calculus, discrete mathematics and elementary logic that are in support of computer science.
	Applying knowledge and understanding Be able to use the tools of mathematics to solve problems. Making judgments Be able to work autonomously according to the own level of knowledge and understanding.
	Communication skills Be able to use one of the three languages English, Italian and German and be able to use technical terms and communication appropriately.
	Learning Skills Have developed learning capabilities to pursue further studies with a high degree of autonomy.
	Written exam.
ASSESSMENT	The written exam consists of verification questions, transfer of knowledge questions and exercises. The learning outcomes related to knowledge and
understanding, applying knowledge and understanding and those related to the student's ability to learn and apply the acquired learning skills, will be assessed.	
English	

Fakultät für Ingenieurwesen

Facoltà di Ingegneria

Faculty of Engineering

EVALUATION	Final written exam counting 100% for the evaluation and covering the full program of the course. Written exam questions will be evaluated in terms of CRITERIA AND CRITERIA FOR AWARDING MARKS
REQUIRED Susanna Epp: Discrete Mathematics with Applications, Cengage Learning, READINGS 4th edition. [Main book]	
SUPPLEMENTARY	Kenneth Rosen: Discrete Mathematics and its Applications, McGraw-Hill, READINGS
Tth edition. [Auxiliary book]	

