COURSE DESCRIPTION – ACADEMIC YEAR 2023/2024

<table>
<thead>
<tr>
<th>Course title</th>
<th>Allgemeine und Anorganische Chemie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>42102</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>CHIM/03</td>
</tr>
<tr>
<td>Degree</td>
<td>Bachelor in Industrial and Mechanical Engineering (L-9)</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>36</td>
</tr>
<tr>
<td>Total lab hours</td>
<td>36</td>
</tr>
<tr>
<td>Attendance</td>
<td>Not compulsory</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>none</td>
</tr>
<tr>
<td>Course page</td>
<td>Microsoft Teams (and https://ole.unibz.it/)</td>
</tr>
</tbody>
</table>

Specific educational objectives
The course is part of the courses in the area of basic sciences and specifically in the context of chemical sciences. The aim of the course is to provide students with an adequate command of general chemical principles.

The purpose of the course is to provide the basic knowledge on the structure of matter as well as the thermodynamic and kinetic principles that regulate its transformation. Special attention will be given to a molecular understanding of the properties of matter through the study of the structural and functional aspects of simple molecules with relevance for the bio-geo-chemical cycles of the elements. In addition, the knowledge acquired in this course will be useful to understand topics from materials science and energy production.

Lecturer
Dr. Oberhuber Michael

Contact
Michael.Oberhuber2@unibz.it

Scientific sector of lecturer
CHIM/03

Teaching language
German

Office hours
During the semester, see calendar

Lecturing Assistant (if any)

Contact LA

Office hours LA

List of topics
- Atomic theory, the chemical bond, and the periodic table
- States of matter and phase transitions
- Stoichiometry, reaction equations, basic thermodynamics and catalysis.
- Chemical reactions (solvation, acid-base, redox incl. electrochemistry)
- The chemical equilibrium
- Quantum mechanics
Crystal structures
- Thermodynamics
- Macromolecular chemistry and nanotechnology
- Biomolecules
- Reaction kinetics

Teaching format
- Frontal lectures, exercises, labs.

Learning outcomes
Knowledge and understanding:
- Structure-properties-relationship of matter
- Chemical transformation of matter
- Chemical equilibrium, principles of thermodynamics and kinetics
- Electrochemistry
- Chemical properties of selected materials and metals

Applying knowledge and understanding:
- to chemical calculations
- to laboratory experiments
- to material science relevant to engineering

Making judgments:
- Chemical aspects of material science
- On laboratory experiments and their outcomes.

Communication skills:
- Express chemical problems in writing
- Writing reports on laboratory experiments

Learning skills:
- Understanding invisible and intangible phenomena and concepts without equivalent on the macroscale (molecules, quantum mechanics etc.)
- Laboratory experiments

Assessment
- In-class exercises
- Laboratory experiments and reports.
- Exam: Written multiple-choice exam with questions and problems covering all course topics. Non-attending students can learn from the course material.

Assessment language
- German

Assessment Typology
- Monocratic

Evaluation criteria and criteria for awarding marks
- Grading with a single final grade.
- Criteria for grading: comprehension, problem-solving skills, technical competence. Laboratory reports: the ability to summarize the experiment, describe essential steps, clarity and linguistic
quality of the response, and correct calculation of results will be evaluated.

<table>
<thead>
<tr>
<th>Required readings</th>
<th>Guido Kickelbick „Chemie für Ingenieure“, Pearson Verlag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary readings</td>
<td>Charles E. Mortimer und Ulrich Müller „Chemie: Das Basiswissen der Chemie“, Themie Verlag.</td>
</tr>
<tr>
<td>Software used</td>
<td></td>
</tr>
</tbody>
</table>
COURSE DESCRIPTION – ACADEMIC YEAR 2023/2024

<table>
<thead>
<tr>
<th>Course title</th>
<th>Allgemeine und Anorganische Chemie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>42102</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>CHIM/03</td>
</tr>
<tr>
<td>Degree</td>
<td>Bachelor in Industrial and Mechanical Engineering (L-9)</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>36</td>
</tr>
<tr>
<td>Total lab hours</td>
<td>36</td>
</tr>
<tr>
<td>Attendance</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>none</td>
</tr>
<tr>
<td>Course page</td>
<td>Microsoft Teams (and https://ole.unibz.it/)</td>
</tr>
</tbody>
</table>

Specific educational objectives

The course is part of the courses in the area of basic sciences and specifically in the context of chemical sciences. The aim of the course is to provide students with an adequate command of general chemical principles.

The purpose of the course is to provide the basic knowledge on the structure of matter as well as the thermodynamic and kinetic principles that regulate its transformation. Special attention will be given to a molecular understanding of the properties of matter through the study of the structural and functional aspects of simple molecules with relevance for the bio-geo-chemical cycles of the elements. In addition, the knowledge acquired in this course will be useful to understand topics from materials science and energy production.

Lecturer
- Dr. Oberhuber Michael
- Contact: Michael.Oberhuber2@unibz.it
- Scientific sector of lecturer: CHIM/03
- Teaching language: German
- Office hours: During the semester, see calendar
- Lecturing Assistant (if any): Contact LA
- Office hours LA:

List of topics
- Atomic theory, the chemical bond, and the periodic table
- States of matter and phase transitions
- Stoichiometry, reaction equations, basic thermodynamics and catalysis.
- Chemical reactions (solvation, acid-base, redox incl. electrochemistry)
- The chemical equilibrium
- Quantum mechanics
Crystal structures
- Thermodynamics
- Macromolecular chemistry and nanotechnology
- Biomolecules
- Reaction kinetics

Teaching format
- Frontal lectures, exercises, labs.

Learning outcomes

Knowledge and understanding:
- Structure-properties-relationship of matter
- Chemical transformation of matter
- Chemical equilibrium, principles of thermodynamics and kinetics
- Electrochemistry
- Chemical properties of selected materials and metals

Applying knowledge and understanding:
- to chemical calculations
- to laboratory experiments
- to material science relevant to engineering

Making judgments:
- Chemical aspects of material science
- On laboratory experiments and their outcomes.

Communication skills:
- Express chemical problems in writing
- Writing reports on laboratory experiments

Learning skills:
- Understanding invisible and intangible phenomena and concepts without equivalent on the macroscale (molecules, quantum mechanics etc.)
- Laboratory experiments

Assessment
- In-class exercises
- Laboratory experiments and reports.
- Exam: Written multiple-choice exam with questions and problems covering all course topics. Non-attending students can learn from the course material.

Assessment language
- German

Assessment Typology
- Monocratic

Evaluation criteria and criteria for awarding marks
- Grading with a single final grade.
- Criteria for grading: comprehension, problem-solving skills, technical competence. Laboratory reports: the ability to summarize the experiment, describe essential steps, clarity and linguistic
The quality of the response, and correct calculation of results will be evaluated.

<table>
<thead>
<tr>
<th>Required readings</th>
<th>Guido Kickelbick „Chemie für Ingenieure“, Pearson Verlag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary readings</td>
<td>Charles E. Mortimer und Ulrich Müller „Chemie: Das Basiswissen der Chemie“, Themie Verlag.</td>
</tr>
<tr>
<td>Software used</td>
<td></td>
</tr>
</tbody>
</table>