Syllabus

Course title
Methods for Public Policies Evaluation

Course code
27416 - 27507

Scientific sector
SECS-P/03

Degree
LM 63 – Master in economics and management of the public sector
LM DATA – Master in Data Analytics for Economics and Management

Semester and academic year
2nd semester 2023/24

Year
2nd year

Credits
6

Modular
No

Total lecturing hours
36

Total lab hours
-

Total exercise hours
6

Attendance
Recommended, but not required.

Prerequisites
Knowledge of fundamental statistical concepts at the level of the LM 63 27066 Statistics for the Public Sector of the Master programme LM 63 will be helpful, but it is not required.

Course page
https://www.unibz.it/en/faculties/economics-management/master-public-policies-administration/
unibz Open Learning Environment (OLE)

Specific educational objectives
The course refers to the typical educational activities and belongs to the scientific area of public economics (SEC-P/03).

The course will introduce students to the most commonly used quantitative techniques in impact evaluation. Students will learn a set of reasoning skills to help them to assess causality and impact, so to become both a critical consumer and producer of impact evaluations.

Lecturer
Prof Dr Alexander Moradi
Office E2.08,
Tel 0471 013135
https://alexandermoradi.org/
https://www.unibz.it/en/faculties/economics-management/academic-staff/person/39937-alexander-moradi

Scientific sector of the lecturer
SECS-P/01 (economia politica)

Teaching language
English

Office hours
18 hours
MySNS – Individual timetable
Webpage:
https://www.unibz.it/en/timetable/?sourceId=unibz&department=26°ree=13543%2C13723

<table>
<thead>
<tr>
<th>Lecturing assistant</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching assistant</td>
<td>None</td>
</tr>
</tbody>
</table>

List of topics covered

1) The experimental ideal: Causal effects and the selection problem
2) Randomized control trials
3) Natural experiments (discovering, analyzing, evaluating)
4) Panel, difference-in-differences, matching, instrumental variables
5) Regression Discontinuity Designs

The emphasis is on the application of statistical techniques to evaluate real world policy questions. For this we use the statistical software R.

Teaching format

Lectures, exercises, projects, ...

Learning outcomes

Knowledge and understanding

Students of the course acquire detailed knowledge about the economics and econometrics of policy evaluation.

Applying knowledge and understanding

At the end of the course, students will be able to apply quantitative techniques and reproduce the results of an impact evaluation of actual policy interventions in particular fields of economics using the statistical software R.

Making judgments

Students will learn to assess the validity of research methods that aim to estimate causal estimates.

Communication skills

Both oral and written communication skills will be developed in this course via presentations and written assessments. Students will be expected to be able to present research findings to both specialist and non-specialist audiences in a clear and precise way.

Learning skills

The course will help participants to better think logically, analytically and critically, and bring these skills to their future workplaces.

Assessment

For attending and non-attending students,

i) Final exam (30% of the final grade):
The final exam consists of problems related to the analysis and interpretations of impact evaluations.

ii) Project assignment (70% of the final grade):
The project requires either a) the replication and critical reflection on an existing impact evaluation or b) developing an evaluation plan for a topic of their own. Students will have to give a presentation on their analyses and hand in a 2,000 word project report towards the end of the semester.

The final exam includes multiple problems that assess the understanding of the methods and the students’ ability to apply the knowledge to real world policies. Questions related to interpretation of computer outputs assess students’ ability to interpret analysis results.

The in-class slides of the instructor will form the basis for the material covered in the exams and will be made available to the students via OLE.

<table>
<thead>
<tr>
<th>Assessment language</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation criteria and criteria for awarding marks</td>
<td>Criteria are standard: in exams correct procedure and solution counts. In addition, solutions to problems require the ability to summarize, evaluate, and demonstrate critical thinking. Similar skills are required for the group presentations along with teamwork.</td>
</tr>
<tr>
<td>Supplementary readings</td>
<td>Dunning, T. (2012). Natural Experiments in Social Sciences, Cambridge University Press. The lectures will draw from journal articles. Supplementary reading material will be posted regularly on OLE.</td>
</tr>
</tbody>
</table>