Syllabus

Course description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Big Data and Blockchain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>25418</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>ING-INF/05</td>
</tr>
<tr>
<td>Degree</td>
<td>LM 77 Master in Accounting and Finance</td>
</tr>
<tr>
<td>Semester and academic year</td>
<td>2nd semester 2023-2024</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
</tr>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
</tbody>
</table>

Short Description

This is a programming course particularly focused on the handling and analysis of financial big data. The first part of the course focuses on using Python’s package pandas to get, analyse and extract information from large amounts of financial data. The course is strongly focused on practise, consisting of in very short theoretical sessions followed by several examples, exercises and homework. An overview of blockchain technology, decentralised finance and a practical experience with smart contracts on Ethereum blockchain are introduced for their innovative potentialities as well as an example of big data to be analysed.

This course gives future professionals in the fintech industry the fundamental skills in this sector, which can be further expanded building on the basis learnt here. To professionals in other industries it offers skills which extend their understanding of the structure and potential use of large datasets and new technologies.

Total lecturing hours

<table>
<thead>
<tr>
<th>Total lecturing hours</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total lab hours</td>
<td>0</td>
</tr>
<tr>
<td>Total exercise hours</td>
<td>0</td>
</tr>
</tbody>
</table>

Attendance

A continuous and regular attendance is suggested, but not required. Intermittent attendance is strongly discouraged: for non-attending students additional video material which covers the entire course is available.

Prerequisites

- English understanding and reading at level B2.
- A basic course in computer science covering basic Microsoft Windows, file handling, Internet usage, Excel or a similar data organization program at good level.
- Basic descriptive statistics and basic finance knowledge.

Course page

www.paolocoletti.com/bigdata

Specific educational objectives

The course is designed to acquire data analysis skill fundamental for the fintech sector and useful even in other sectors. An overview of current blockchain technology and decentralised finance is given.
technology, in particular for decentralised finance, complements the course.

Lecturer

Paolo Coletti
Office E 203
Paolo.Coletti@unibz.it
www.paolo.coletti.com

Scientific sector of the lecturer

ING-INF/05

Teaching language

English

Office hours

please refer to the lecturer's timetable

Lecturing assistant

none

Teaching assistant

To be determined

Office hours

9

List of topics covered

Pandas for Python, financial analysis.
Blockchain and cryptocurrencies. Decentralised Finance.
Smart contracts on Ethereum blockchain.

Teaching format

Frontal lectures in standard classroom with examples and exercises. Students attend with their own notebook or a computer borrowed from the library. Homework is assigned at every lesson and will be corrected in the next one.

Learning outcomes

Knowledge and understanding

- knowledge and understanding of data structures for financial, macro-economic and market data
- knowledge and understanding of algorithms for analysing large amount of data in real time
- understanding of technical problems when working with big data
- basic knowledge and understanding of potential uses of smart contracts on blockchain

Applying knowledge and understanding

- ability to organize and restructure accounting, financial, organizational, economic and market data
- ability to use analysis tools to predict trends in financial markets or to perform quantitative analysis of organizational data

Making judgments

- ability to choose the adequate tools or techniques when dealing with big data
- ability to observe and evaluate graphical and statistical representations without being misled
- ability to determine the difficulty level for data handling
<table>
<thead>
<tr>
<th>Communication skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ability to communicate efficiently the results of data analyses through graphical representations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ability to use online help systems to further expand program usage</td>
</tr>
</tbody>
</table>

Assessment
1. Written assessment on blockchain technology and decentralised finance.
2. Practical assessment on Python programming for finance.
3. Practical assessment on smart contracts development. As optional replacement for practical assessments 2 and 3, constant assignments and midterms to test student’s skills.

Assessment language
English

Evaluation criteria and criteria for awarding marks
Grade is the weighted average of the assessments, based on the amount of class hours dedicated to each topic (approximately 21%, 46%, 33%). File handling and severe basic computer errors count negatively on the final grade.

Particular emphasis is given to solutions which are optimal, efficient, versatile and extensible. Active contributions to the course in class or via email count positively towards the final grade.

Required readings
- Videos on Python programming for finance, available on www.paolo.coletti.com/bigdata
- Videos on blockchain technology and decentralised finance, available on www.paolo.coletti.com/bigdata
- Videos on smart contracts development, available on www.paolo.coletti.com/bigdata

Supplementary readings