

## Syllabus Course description

| Course title      | Optimisation                                      |
|-------------------|---------------------------------------------------|
| Course code       | 42169                                             |
| Scientific sector | MAT/09                                            |
| Degree            | Bachelor in Industrial and Mechanical Engineering |
| Semester          | II                                                |
| Year              |                                                   |
| Academic Year     | 2022-2023                                         |
| Credits           | 6                                                 |
| Modular           | No                                                |

| Total lecturing hours | 36                       |
|-----------------------|--------------------------|
| Total lab hours       |                          |
| Total exercise hours  | 24                       |
| Attendance            | Recommended              |
| Prerequisites         | Basics of Linear Algebra |
| Course page           |                          |

| Specific educational objectives | The course aims to extend the knowledge learned from the courses of mathematical analysis and linear algebra by applying them to optimization problems.  In addition to the traditional themes such as Linear Programming and Network Problems, the course develops some alternative and original approaches, such as Game Theory.  At the end of the course the student should be able to interpret a large class of optimization problems, to formulate a mathematical model for representing them, to develop a suitable algorithm to achieve a solution and, finally, to interpret the results. |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Lecturer                          | Prof. GianDemetrio Marangoni |  |  |  |  |
|-----------------------------------|------------------------------|--|--|--|--|
| Scientific sector of the lecturer | SECS-P/01                    |  |  |  |  |
| Teaching language                 | English                      |  |  |  |  |
| Office hours                      | 18                           |  |  |  |  |
| Teaching assistant (if any )      | -                            |  |  |  |  |
| Office hours                      | -                            |  |  |  |  |

|                        | Matrix Algebra and Linear Systems                               |  |  |  |
|------------------------|-----------------------------------------------------------------|--|--|--|
|                        | A review                                                        |  |  |  |
|                        | Linear Programming                                              |  |  |  |
|                        | Linear Programming problems – The simplex method –              |  |  |  |
|                        | Sensitivity analysis – Shadow prices – The theory of            |  |  |  |
|                        | duality                                                         |  |  |  |
|                        | Integer linear programming                                      |  |  |  |
|                        | Continuous and integer linear programming – The cutting         |  |  |  |
|                        | plane method – The branch and bound method – Binary             |  |  |  |
|                        | programming                                                     |  |  |  |
|                        | Graph Theory                                                    |  |  |  |
|                        | Graphs and networks – Matrix representation of a graph –        |  |  |  |
|                        | The shortest spanning tree – Shortest path – Maximum            |  |  |  |
| List of topics sovered | flow problems                                                   |  |  |  |
| List of topics covered | Game Theory                                                     |  |  |  |
|                        | Static games – Discrete and continuous strategies – Nash        |  |  |  |
|                        | equilibrium with discrete and continuous strategies –           |  |  |  |
|                        | Mixed strategies – Dynamic games – The game tree and            |  |  |  |
|                        | backward induction – Subgame–perfect Nash equilibrium           |  |  |  |
|                        | <ul> <li>Backward induction and subgame–perfect Nash</li> </ul> |  |  |  |
|                        | equilibrium – Dynamic games with continuous strategies          |  |  |  |
|                        | Multivariable Optimisation                                      |  |  |  |
|                        | Optimization without constraints and constrained                |  |  |  |
|                        | optimization: a review –Optimisation with inequality            |  |  |  |
|                        | constraints – The Kuhn-Tucker conditions                        |  |  |  |
|                        | Optimization problem software                                   |  |  |  |
|                        | Microsoft Excel and WolframAlpha software for                   |  |  |  |
| Teaching format        | optimization problems Lectures, exercises and computer lab      |  |  |  |
| reaching format        | 1. Knowledge and understanding                                  |  |  |  |
|                        | Knowledge and understanding of Linear Programming               |  |  |  |
|                        | optimisation techniques and Game Theory strategy                |  |  |  |
| Learning outcomes      | choices.                                                        |  |  |  |
|                        | 2. Applying knowledge and understanding                         |  |  |  |
|                        | Application of optimisation techniques and strategy             |  |  |  |
|                        | choices to real problems related to economic and                |  |  |  |
|                        | technological decision-making.                                  |  |  |  |
|                        | 3. Making judgements                                            |  |  |  |
|                        | Making judgments on the effectiveness of the solving            |  |  |  |
| _                      | techniques adopted and on the robustness of the results         |  |  |  |
|                        | obtained.                                                       |  |  |  |
|                        | 4. Communication skills                                         |  |  |  |
|                        | Ability to interpret the results obtained and to highlight      |  |  |  |
|                        | strength and critical aspects.                                  |  |  |  |
|                        | 5. Learning skills                                              |  |  |  |
|                        | Ability to independently apply the techniques of Linear         |  |  |  |
|                        | Programming and Game Theory to real problems that               |  |  |  |
|                        | may arise in professional life.                                 |  |  |  |



|                                                     | Formative and Summative assessment                                                                                                                                              |   |                     |                  |  |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------|------------------|--|--|
|                                                     | During the course, one or more tests will be held to verify<br>the achievement of the teaching objectives by the<br>students.                                                   |   |                     |                  |  |  |
| Assessment                                          | Form                                                                                                                                                                            | % | Length<br>/duration | ILOs<br>assessed |  |  |
|                                                     | Written exam<br>and exercises<br>to be solved<br>with Excel and<br>WolframAlpha<br>software                                                                                     |   | 90 minutes          |                  |  |  |
| Assessment language                                 | English                                                                                                                                                                         |   |                     |                  |  |  |
| Evaluation criteria and criteria for awarding marks | Knowledge of theoretical basis, correctness in applying solution techniques, correctness of results, ability to set up and solve a problem with Excel and WolframAlpha software |   |                     |                  |  |  |
| Required readings                                   | GianDemetrio Marangoni, Mathematical Programming and Economic Analysis, Lugano, USI, 2018                                                                                       |   |                     |                  |  |  |
| Supplementary readings                              | Hillier, Liberman, Introduction to Operations Research, 11 <sup>th</sup> ed., McGrawHill, 2021                                                                                  |   |                     |                  |  |  |