

## Master in Applied Linguistics (LM-39)

| Course title:                    | Computer Programming                                                                                      |
|----------------------------------|-----------------------------------------------------------------------------------------------------------|
| Year:                            | 1st year                                                                                                  |
| Semester:                        | 1st semester - 2 <sup>nd</sup> semester                                                                   |
| Course code:                     | 54102                                                                                                     |
|                                  | 51102                                                                                                     |
| Scientific sector:               | INF/01                                                                                                    |
| Course teacher:                  | Gennari Rosella                                                                                           |
|                                  | gennari@inf.unibz.it                                                                                      |
|                                  | gemaneamatiozae                                                                                           |
|                                  |                                                                                                           |
| Modular:                         | YES                                                                                                       |
| Other teachers                   | Billero Riccardo                                                                                          |
|                                  | Riccardo.Billero@unibz.it                                                                                 |
| <b>A</b>                         |                                                                                                           |
| Credits:                         | 8                                                                                                         |
| Total lecture/laboratory hours:  | Module 1 (R. Gennari): 60 hours;<br>Module 2 (R.Billero): 30 hours.                                       |
| Total office hours:              | 18 (Module 1) + 6 (Module 2)                                                                              |
| Office hours:                    | By previously taking appointment <b>via mail</b> , with subject " <b>course</b>                           |
|                                  | in BX".                                                                                                   |
|                                  |                                                                                                           |
| Attendance:                      | according to regulation                                                                                   |
| Teaching language:               | English                                                                                                   |
| Prerequisites:                   | none                                                                                                      |
|                                  |                                                                                                           |
| Course description:              | The course is for students of the humanities area.                                                        |
|                                  |                                                                                                           |
|                                  | It offers an introduction to the basics of computer programming.                                          |
|                                  | The course uses the Python programming language and Natural                                               |
|                                  | Language Processing (NLP) packages or modules.                                                            |
| Specific educational objectives: | The aim is to provide students with an adequate knowledge of                                              |
|                                  | general computer science concepts, and the acquisition of specific                                        |
|                                  | knowledge and mastery of the basics of Python programming for                                             |
|                                  | their degree course.                                                                                      |
|                                  |                                                                                                           |
|                                  | For specific disciplinary objectives, students are referred to list of                                    |
|                                  | topics.                                                                                                   |
| List of covered topics:          | This course introduces students to the basics of Python                                                   |
|                                  | programming, and topics relevant for applied linguistics with                                             |
|                                  | Python.                                                                                                   |
|                                  | Tanias of Madula 1 and as follower                                                                        |
|                                  | Topics of Module 1 are as follows:                                                                        |
|                                  | <ol> <li>(1) what computer science is;</li> <li>(2) how a computing device/computer interactor</li> </ol> |
|                                  | (2) how a computing device/computer interacts;                                                            |
|                                  | (3) how to write basic Python programs with atomic statements;                                            |
|                                  | (4) how to interpret Python programs;                                                                     |
|                                  | (5) how to test Python programs;                                                                          |
|                                  | (6) how to import relevant Python packages (time, csv,                                                    |
|                                  |                                                                                                           |
|                                  | string,);<br>(7) how to update/install new Python packages;                                               |
|                                  | (8) how to write Python programs with compound                                                            |
|                                  | statements:                                                                                               |
|                                  | גמוכוווכוונג.                                                                                             |

|                    | specifications; they aim at making students connect different parts, explained in the course.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | The TEAMS app is used to distribute challenges, which are held during class hours. Their resolutions are also discussed during class hours.                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | <b>WORKSHOP BASED CLASSES</b><br>Workshops are held in Module 2. They are similar to challenge-<br>based classes, in that students are asked to program. Whereas in<br>the latter classes the teacher gives specific programming<br>exercises, in workshop-based classes students need to choose a<br>programming project to tackle.                                                                                                                                                                                                      |
|                    | The teacher offers students a range of challenges and possible resolutions. Students need to start from these and mash them up in their own programming project, according to the given requirements.                                                                                                                                                                                                                                                                                                                                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Learning outcomes: | <ul><li>Knowledge and understanding:</li><li>1. understanding the fundamentals of computer science,</li><li>2. understanding a Python program.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | <ul> <li>Analysis and application of knowledge:</li> <li>3. analysing Python programs for resolving computational problems,</li> <li>4. and applying simple resolution algorithms, by writing short Python programs.</li> </ul>                                                                                                                                                                                                                                                                                                           |
|                    | <ul> <li>Making judgments:</li> <li>5. acquiring critical thinking and making judgments related to the use of Python for tackling computational problems:</li> <li>(a) how to abstract away details,</li> <li>(b) how to model a computational problem (e.g., what data to use),</li> <li>(c) how to resolve it (what algorithm to use),</li> <li>(d) how to resolve it optimally (e.g., when and how to define a function),</li> <li>(e) how to take a critical thinking stance towards one's approach to resolving problems.</li> </ul> |
|                    | <ul> <li>Learning and communicating:</li> <li>ability to learn and work independently,</li> <li>ability to learn and work collaboratively,</li> <li>knowing how to reflect and communicate one's thoughts on a problem and how to solve it computationally.</li> </ul>                                                                                                                                                                                                                                                                    |
| Assessment:        | There are two <b><u>alternative</u></b> assessments: Intermediate Assessment; Final Assessment.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | <ul> <li>Intermediate Assessment</li> <li>Students can take an intermediate exam, split in two parts, one per Module: <ul> <li>programming exercises, based on material of Module 1, at the end of Module 1;</li> <li>a mashup project, based on material of Module 2, discussed at the end of Module 2.</li> </ul> </li> <li>Passing the part related to Module 1 is <u>necessary</u> for discussing the mashup project at the end of Module 2.</li> </ul>                                                                               |
|                    | <b>Final Assessment</b><br>The final exam is held during the exam day. It consists of two<br>parts, one per Module:                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                                            | <ul> <li>challenges, namely, programming exercises, based on<br/>material of Module 1;</li> <li>a mashup project, based on material of Module 2.</li> <li>Students tackle programming exercises of Module 1 during the<br/>exam day. Students work on their mashup project before the<br/>exam day and they submit it during the exam day.</li> </ul> |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluation criteria and criteria for<br>awarding markings: | <ul> <li>The evaluation of the course is based on:</li> <li>(1) the evaluation for the part of the assessment related to Module 1; the minimum for passing it is 12 out of 21;</li> <li>(2) a positive evaluation for the part of the assessment related to Module 2; the minimum for passing it is 6 out of 11.</li> </ul>                           |
|                                                            | Marks for Module 1 considers the correctness of resolutions of programming exercises, the quality of resolutions, as well as the displayed analytical and reflective skills.                                                                                                                                                                          |
|                                                            | Marks for Module 2 considers whether the mashup project satisfies the requirements given during the course, the overall quality of the project (e.g., its complexity) and its presentation.                                                                                                                                                           |
| Required reading:                                          | Given during classes.                                                                                                                                                                                                                                                                                                                                 |
| Supplementary reading:                                     | Given during classes.                                                                                                                                                                                                                                                                                                                                 |
| Software:                                                  | <b>TEAMS</b> for managing the course material and communication.                                                                                                                                                                                                                                                                                      |
|                                                            | <b>Google Colaboratory</b> for running Python programs, accessed via the student's <b>unibz</b> account (not others).                                                                                                                                                                                                                                 |