Syllabus
Course description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Forest planning and protection forestry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>47031</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>AGR/05 - AGR/09</td>
</tr>
<tr>
<td>Degree</td>
<td>Master in Environmental Management of Mountain Areas (EMMA)</td>
</tr>
<tr>
<td>Semester</td>
<td>II</td>
</tr>
<tr>
<td>Year</td>
<td>I</td>
</tr>
<tr>
<td>Academic year</td>
<td>2022/23</td>
</tr>
<tr>
<td>Credits</td>
<td>9</td>
</tr>
<tr>
<td>Modular</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Total lecturing hours	18 + 18 + 18
Total lab hours	
Total exercise hours	12 + 12 + 12
Attendance	

Prerequisites

Course page: [Course Offering - enrolled from 2021 / Free University of Bozen-Bolzano (unibz.it)](unibz.it)

Specific educational objectives

The course belongs to the class "characterizing" and specifically to the scientific disciplinary area of forestry and environmental disciplines. It is part of the Environmental protection curriculum. Three modules that are strongly interconnected compose the course.

The educational objectives of the protection forestry module are to provide knowledge about the role of mountain forests in mitigating and preventing natural hazards without compromising the provision of other ecosystem services. The forest management specifically oriented to enhance the protective function of mountain forests is the main focus of this module. For each natural hazard and forest category of Alpine area the most suitable forest management approach will be discussed also referring to real case-studies.

The educational aim of the "Forest Inventories" module is to provide knowledge about methods and techniques for measuring forest resources. During lectures, students will learn about the innovative ground and remote sensing approaches while during practical activities, students will have the opportunity to put at work the acquired knowledge with data and software. Participants will familiarize themselves with some of the newest technologies used to estimate forest cover, biomass,
and eventually carbon stocks.

The educational aim of the module "Forest Harvesting and Logistics" is to provide knowledge about:

- the main features of the machines to be used for the forest harvesting in mountain areas;
- the basic procedures for selecting and planning the use of machines related to ground and aerial logging operations;
- technical, operational and economic performances of a given technology system;
- analysis of weak- and strength-points of any mechanization solution, with emphasis to safety issues.

Module 1 Protection Forestry

<table>
<thead>
<tr>
<th>Lecturer</th>
<th>Giorgio Alberti, K Building, Room 4.02, email: Giorgio.alberti@unibz.it, tel. 0471-017088</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific sector of the lecturer</td>
<td>AGR/05</td>
</tr>
<tr>
<td>Teaching language</td>
<td>English</td>
</tr>
<tr>
<td>Office hours</td>
<td>12</td>
</tr>
<tr>
<td>Teaching assistant (if any)</td>
<td>Alessandro Andriolo</td>
</tr>
<tr>
<td>Office hours</td>
<td>Upon appointment</td>
</tr>
</tbody>
</table>

List of topics covered

- Definition of protection forests; definition of hazard and risk; principles of risk management; main natural hazards in the Alps; protection forestry and forest planning.
- Recalls about main characteristics and organs of a tree; roots and soil properties; tree crown, forest cover and rain/snow interception; tree stem, stability and protection functions.
- Extreme events and return period.
- How to identify protection forests.
- Definition of target profile (species composition, forest structure, regeneration); indicators plots; forest stand dynamics.
- Protection forestry and landslides: recalls on landslides (susceptibility assessment, types); vegetation and landslides; dendro-geomorphology application to landslides; forest management and landslides.
- Protection forestry and avalanches: definitions; avalanches and forests dynamics; forest and avalanches; forest management to enhance protective role against avalanches; case studies.
Module 2: Forest Inventories

Lecturer

Torresani Michele
K Building, Room 3.04, email: michele.torresani@unibz.it

Scientific sector of the lecturer

AGR/05

Teaching language

English

Office hours

12

Teaching assistant (if any)

-

Office hours

-

List of topics covered

- Introduction to the topic of forest inventories including general definitions and an overview of the course objectives.
- Description of approaches for measuring forests like relascopy and terrestrial laser scanning.
- Introduction to remote sensing with relevant platforms and sensors.
- Use of remote sensing for mapping forests with some examples of applications.
- Applications of light detection and ranging.
- UAV-borne sensing forest applications with a focus on photogrammetry.
- National forest inventories – an overview of how forest inventories are conducted in different countries.
- Forests and carbon accounting.

Teaching format

The module is based on frontal lectures. Hands-on exercises and excursions will permit the students to test the acquired knowledge on real world problems.

Module 3: Forest Harvesting and Logistics

Lecturer

Raffaele Cavalli, raffaele.cavalli@unipd.it

Scientific sector of the lecturer

AGR/09 – AGRICULTURAL MECHANICS

Teaching language

English

Office hours

9 - Upon arrangement by e-mail

Teaching assistant (if any)

-

Office hours

-

List of topics covered

- FOREST OPERATIONS – Peculiarities of forest work and consideration of the limits related to forest operations; knowledge of the basics of work safety applied in forestry; consideration of the impact of the use of different equipment on the health of the operator.
HARVESTING SYSTEMS
Introduction to the main harvesting systems used in mountain areas and related machinery. General description of the different machinery used for logging activities according to the different levels of mechanization.

OPERATIONAL MONITORING SYSTEMS
Estimations of work times, work organization and scheduling, concepts of work rate and workability. Economic performances: exercise costs of forestry processes.

Teaching format
This is a lecture-lab module in which topics are presented by the Professor. Practical activities (field excursions) are led by the Professor eventually assisted by an expert of the sector invited on demand. Slides pdf-presentations will be available in the course reserve collection database of the faculty. Additional materials related to both proposed and solved exercises and articles on specific topics will be provided by the teacher, directly.

Learning outcomes

Knowledge and understanding
The course is aimed to provide knowledge and the scientific basis about the role of mountain forests in mitigating and preventing natural hazards, the different methods and techniques used to quantify forest resources and the forest machinery used in mountain areas, with related aspects on ergonomic, safety and work organizations.

Applying knowledge and understanding
By the end of the course, students should be able to:
1. Manage protective forests according to specific natural hazard and target to protect.
2. Select the best approach to properly quantify forest resource at plot and regional scale.
3. Plan logging and timber harvesting activities in mountain areas, in various environmental and production contexts.

Making judgments
Students will have the ability to integrate knowledge, formulate judgments and handle complexity of the management of protective forests, assessment of forest resources, and planning of logging and timber harvesting activities in mountain areas.

Communication skills
Students will be able to present the acquired skills with a correct technical language.

Learning skills
Students will be able to autonomously extend the knowledge acquired during the study course by reading and understanding scientific and technical documentation.

Assessment
The assessment will be carried out either by written
<table>
<thead>
<tr>
<th>Assessment language</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation criteria and criteria for awarding marks</td>
<td>The final grade for the entire course will be calculated as the average of the results obtained in the three modules.</td>
</tr>
<tr>
<td></td>
<td>• The assessment criteria for the assignments include soundness of the proposed approach, critical thinking, clarity and originality in the presented solution, mastery of the technical language, quality of presentation.</td>
</tr>
<tr>
<td></td>
<td>• Relevant for the oral exam assessment are correctness of the answers, mastery of the technical language, ability to produce critical judgment, capability to create connections between the topics of the course.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required readings</th>
<th>Slides pdf-presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary readings</td>
<td>The supplementary material for the module “Protection Forestry” and the module “Forest Inventories” will be made available on Teams/OLE during the course.</td>
</tr>
<tr>
<td>For the module Forest Harvesting and Logistics:</td>
<td></td>
</tr>
<tr>
<td>• Visser, R., Next Generation Timber Harvesting Systems: Opportunities for remote controlled and autonomous machinery. Forest & Wood Products Australia, 2018</td>
<td></td>
</tr>
</tbody>
</table>