Syllabus Course description

Course title	Fundamentals of Programming II
Course code	42405 B
Scientific sector	INF/01
Degree	CORSO DI LAUREA IN INGEGNERIA ELETTRONICA E DEI SISTEMI CIBERFISICI BACHELOR IN ELEKTROTECHNIK UND CYBERPHYSISCHEN SYSTEMEN
Semester	2 nd $^{\text {nd }}$
Year	I
Academic year	$2022 / 23$
Credits	6
Modular	Yes

Total lecturing hours		40	
Total exercise hours	20		
Attendance			
Prerequisites	Programming I.		
Course page	Gennari Rosella, Ianeselli Alan		
Lecturers			

Specific educational objectives

Type: "attività formativa di base"
Scientific area: "Matematica, informatica e statistica"
The course is designed for acquiring professional skills and knowledge.

The goal is to teach students to program basic cyberphysical solutions, in which physical and computing components are deeply intertwined.

The first objective of this course is thus to introduce students to physical-computing devices, such as Rasbperry Pi computers and microcontrollers, for sensing data and interacting with people in their environment.

The second objective is then to move students beyond the basics of procedural programming, and to introduce them to the basics of object-oriented programming, besides built-in data structures of Python, such as lists, dictionaries, and tuples.

The emphasis is on how to process data acquired through cyber-physical devices, with Python. Therefore, the third objective is to introduce students to Python data

Assessment \quad| Project and a final written exam. The student's project |
| :--- |
| assesses the learning outcomes related to the application |

	of the acquired knowledge, the ability to make judgments and the communication and learning skills. The written exam has verification questions, transfer of knowledge questions and exercises. The written examination assesses the learning outcomes related to knowledge and understanding, applying knowledge and understanding, and those related to the student ability to learn.
Assessment language	English Evaluation criteria and criteria for awarding marks The student's project counts for 50\% of mark, and the final exam (written) for 50\% of the mark. In case of a positive mark, the project counts for three exam sessions. The project is evaluated in term of quality of the solution, e.g., design of the algorithm, quality of the implementation. Written exam questions are evaluated in term of correctness, clarity and the displayed analytical skills.
Required readings	Course notebooks and material provided by the course teacher, explained during the first class.
Supplementary readings	Additional material will be provided during the course

