

Syllabus Course description

Course title	FLUID MACHINES ENGINEERING			
Course code	45527			
Scientific sector	ING-IND/08 "Fluid Machinery"			
Degree	Master Energy Engineering			
Semester	2			
Year	1			
Academic year	2022/2023			
Credits	9			
Modular	No			

Total lecturing hours	90
Total lab hours	
Total exercise hours	
Attendance	Recommended
Prerequisites	Fluid Machines, Thermodynamics, Mechanics
Course page	Course Offering / Free University of Bozen-Bolzano (unibz.it)

Specific educational objectives	To master the most important concepts about fluid machines dedicated to energy conversion systems and their integration in the energetic system, to give decision tools and criteria for design, cost analysis, efficiency analysis and selection with emphasis to community and small scale plants.
------------------------------------	---

Lecturer	Prof. Battisti Lorenzo			
Scientific sector of the lecturer	ING/IND-08			
Teaching language	English			
Office hours				
Teaching assistant (if any)	-			
Office hours	-			
List of topics covered	The course will cover the following topics: 1. Introduction			
	a. Essentials of fluid Machines and Energy systems			
	i. Elements of fluid dynamics			
	ii. Elements of Fluid Machinery			

		iii.	Elements of Energy systems
	b.	Introdu	uction to renewable energy
2.	Fluid m	achines	for renewable energy
	a.	Solar P	ower
		i.	Solar Resource
		ii.	Solar photovoltaic
		iii.	Concentrated and thermodynamic solar
		iv.	Utility and community scale
	b.	Hydro I	Power
		i.	Hydro Resource
		ii.	Mini-hydro
		iii.	Reversible turbines, PATs and variable speed hydro-turbines
		iv.	Utility and community scale
		٧.	Diagnostics and fault detection
	c.	Wind P	ower
		i.	Wind resource and Terrain
		ii.	Horizontal and vertical axis wind turbines
		iii.	Utility and community scale
		iv.	Diagnostics and fault detection
	d.	Waste	Heat and Water
		i.	Waste Heat
		ii.	Waste Water
	e.	Storage	es
		i.	Types of storage
		ii.	P2X
		iii.	Hydrogen Applications
		iv.	Utility and community scale
	f.	Grid M	anagement & Economics
		i.	Smart Grids

	ii Economic figuras: LCA ELCA DED LCOS		
	ii. Economic figures: LCA, ELCA, PBP, LCOE For each of the technologies presented in the course, the tools needed for the performance evaluation (power, work, efficiency,) will be defined. For some of the proposed technologies, a techno-economic analysis will be carried out as well.		
Teaching format			
Learning outcomes	 During the course, the student will gain knowledge about: 1. Key energy production, storage, transmission and utilisation technologies, including their cost and sustainability aspects over their life cycle 2. How to evaluate the technical characteristics and resources of some of the major renewable power sources and the performance of energy systems and machines related. 3. Develop preliminary design and dimensioning for wind, solar, hydro and hydrogen systems and perform preliminary technology assessment for unconventional energy resources (e.g., Waste Heat) 		
Assessment	Written/Oral Exam and exercise report		
Assessment language	English		
Evaluation criteria and criteria for awarding marks	Oral exam performance and exercises reports assignments performance will be equally weighted for course final grade.		
Required readings	Notes of the course		
Supplementary readings	 Twidell, John, and Tony Weir. Renewable energy resources. Routledge, 2015. Supplementary in-depth research material suggested throughout the course 		