

Syllabus Course description

Course title	Bioenergy
Course code	45535
Scientific sector	ING-IND/24
	"Fundamentals of Chemical Engineering"
Degree	Master Energy Engineering
Semester	2
Year	2
Academic year	2022/2023
Credits	6
Modular	no

Total lecturing hours	60
Total lab and exercise hours	
Attendance	Recommended but not compulsory
Recommended preliminary knowledge	Capability to write mass and energy balances
Connections with other courses	In-depth knowledge of topics dealt in previous courses. In this course we will make use of some of the concepts (thermodynamics, reaction kinetics, heat transfer, conversion technologies, combustion, heat exchangers) dealt in previous courses (Power Production, CHP and District Heating Systems; Engineering Thermodynamics, Heat and Mass Transfer).
Course page	<u>Course Offering / Free University of Bozen-Bolzano</u> (unibz.it)

Specific educational objectives	The course focuses on Bio-Energy and in particular on the exploitation of biomass and organic waste for energy recovery. The course encompasses thermochemical energy processes (combustion, gasification, pyrolysis, reforming, hydrothermal conversion), mechanical and chemical processes (oil extraction and trans-esterification), finally biochemical processes (fermentation and anaerobic digestion). Emphasis is given to thermochemical processes and anaerobic digestion. The course provides chemical engineering tools applied to the analysis of energy conversion processes involving biomass and organic waste. The course provides also the fundamentals of ASPEN PLUS® - a software package designed for process modeling
	PLUS® - a software package designed for process modeling and simulation that is extensively utilized in chemical and
	energy industrial sectors. The student at the end of the course:

will be able to analyze the various technologies available
to energetically valorize the various types of biomass and
organic waste;
• will be able to evaluate performances and limits of the
same technologies in relation to the substrate to be
treated;
• will have clear concepts and design elements to address
the design of a bioenergy plant.

Lecturer	Prof. Luca Fiori				
Scientific sector of the lecturer	ING-IND/24				
Teaching language	English				
Office hours	The lecturer is available to meet students along the whole week, to be agreed through e-mail appointment.				
Teaching assistant (if any)	-				
Office hours	-				
List of topics covered	 Biomass, Bio-Energy and Bio-Refinery Basic concepts of circular economy based on organics. Biomass: Properties and types Biomass: constituents at molecular level, at chemical 				
	level, energy properties. Biomass typologies: lignocellulosic, starchy, sugary, oilseeds, OFMSW, sewage sludge, manure. Biofuels: liquid (biodiesel, bioethanol), gaseous (syngas, biogas), solid (charcoal and biochar). Biomass conversion: Physical conversion Dewatering, drying, size reduction, steam explosion, densification, pelleting, chipping, oil extraction. Biomass conversion: Chemical conversion Oil trans-esterification (biodiesel production).				
	Hydrolysis.				
	 Biomass conversion: Biochemical conversion Anaerobic digestion (biogas production from organic waste and wastewater). Fermentation (bioethanol production) Chemical engineering tools for analysis and design of 				
	energy processes				
	Reaction stoichiometry.Reaction kinetics.				
	Reaction thermodynamics.Reactors.				
	Process analysis and design.				
	Biomass conversion: Thermochemical conversion				
	Biomass storage and feeding systems. Combustion plants for boot generation, wood and				
	Combustion plants for heat generation: wood and nollet burning steves, wood, nollet and wood ships				
	pellet burning stoves; wood, pellet and wood chips				
	boilers; plant schemes for heat generation; control,				

Professional applications of the covered topics	protection and safety systems. Gasification plants. Pyrolysis plants. Innovative bioenergy plants: biomass to synthetic natural gas; biomass to liquid biofuels through Fisher-Tropsch; absorption enhanced reforming. Hydrothermal processes: carbonization, liquefaction, gasification. Algal biofuels Growth/harvest rates, transesterification. Process modeling and simulation with the commercial software ASPEN PLUS® Methane combustion and methane steam reforming. Gasification of biomass. Thermochemical processes coupled to gas turbine, Rankine cycles) Project of biomass plants Design of a thermal plant fueled by wood chips P=70 kW. Cogeneration plant (ICE) fueled by vegetable oil P=1 MWe. Anaerobic digestion plant for organic waste P=999 kWe. The knowledge gained in the Bioenergy course will make the student a "process engineer" who can find employment
Teaching format	in various industrial sectors, in particular but not only in relation to the energy conversion (mechanical, chemical, biochemical, thermochemical) of biomass and waste. The course accounts for frontal lectures (50 hours), during which the lecturer will address both informative and formative topics. The informative activity will provide a comprehensive overview of the bio-energy sector. The training activity will be divided into a discussion of the theoretical topics and the development and solution of some "practical" problems, where the theory will be applied. The lecturer will use PowerPoint presentations, while the exercises will be held on the blackboard. The course also includes ten hours classes in a computer lab where basic knowledge will be provided for the use of ASPEN PLUS® simulation and modeling software, and where ASPEN PLUS® will be used by students, along with the
	lecturer, to design simple thermochemical bio-energetic processes. Students will be provided in advance with the teaching material used during the classes (slides PP, lecture-notes, articles: classes are also intended to deep and critically discuss the topics). The student, in his/her own personal work, must assimilate the concepts at the base of the training part and, if necessary, ask the lecturer (lesson time or other time) for

additional explanations. During classes some exercises will be presented that the student will have to try to carry out autonomously, so that he/she can "self-evaluate" his/her level of learning.

Finally, the student is invited to collaborate with his/her colleagues (in groups of 2-3 people) to draw up a bioenergy project to be developed in Aspen Plus. The design project should be agreed in advance with the lecturer who is available for helping the student during the project development. The project will be concluded with a written report that will be discussed by the student groups in front of the lecturer.

Learning outcomes Intended Learning Outcomes (ILO) 1. Knowledge and understanding: The student will be aware from a technical point of view of energy plants where biomasses and organic wastes are used. 2. Applying Knowledge and understanding: The student will be capable to apply the acquired knowledge to design biomass energy plants and to evaluate their performances. 3. Making judgments: The student will became capable to judge the different options available given the nature of the feedstock available (kind of biomass, kind of organic waste) and the technological opportunities to valorize it as bioenergy. 4. Communication skills: The student will be capable to efficiently communicate concerning bio-energy options, processes and plants. 5. Learning skills The student will be taught that significant bioenergy process advancements are in progress, and that he/she should keep him/herself updated on the last technological outcomes that face the bio-energy market. The assessment of the knowledge gained in the course and **Assessment** the ability to apply such knowledge - as described in the "Learning Outcomes" section - is conducted in two steps: • a presentation with discussion, in the lecturer's office, that will be based on the written report by the student (or

	project of a the • an oral exam in the course a solve a "simple	ermo that and v e" bic mar	energy p will cover where the energy e will take	rocess. the vario student w exercise. into acco	us to	the Aspen Plus pics addressed so be asked to oth the project
	Formative as	sess	ment			
	Form Length duration		/ n	, ===================================		
	In class (and 20 x 60 info-lab) excercises			2		
	Summative assessment					
	Form	%		Length duration	/ n	ILOs assessed
	Project work presentation	30		Presenta and discussic group (about minutes)	ntion on in 45	2,3,4
	Oral exam	70			pen	1,2,3,4,5
Assessment language	English					
Evaluation criteria and criteria for awarding marks	related to bio-c Capability to problems.	energ solv	y process e simple	ses and pla e and co	ants. omple	ex bio-energy es by ASPEN

Required readings	Lecture notes	
Supplementary readings	 Main reference books: Biomass for renewable energy, fuels, and chemicals. D.L. Klass, Academic Press, http://www.sciencedirect.com/science/book/9780124109506 Sistemi a biomasse: progettazione e valutazione economica. E. Bocci, A. Caffarelli, M. Villarini, A. D'Amato, Maggioli Editore, http://www.maggiolieditore.it/9788838759697-sistemi-a-biomasse-progettazione-e-valutazione-economica.html 	
	Other reference books: • Advanced Biofuels and Bioproducts, J. W. Lee, http://www.springer.com/cn/book/9781461433477	

- Algae for Biofuels and Energy, M.A. Borowitzka, N.R. Moheimani,
 - http://www.springer.com/br/book/9789400754782
- Application of Hydrothermal Reactions to Biomass Conversion, F. Jin,
 - http://www.springer.com/cn/book/9783642544576
- Biogas Energy, T. Abbasi, S.M., Tauseef, S.A. Abbasi, http://www.springer.com/us/book/9781461410393
- BioH₂ & BioCH₄ through Anaerobic Digestion, B. Ruggeri, T. Tommasi, S. Sanfilippo,
 - http://www.springer.com/us/book/9781447164302
- Biomass Conversion, C. Baskar, S. Baskar, R.S. Dhillon, https://link.springer.com/book/10.1007%2F978-3-642-28418-2
- Recycling of Solid Waste for Biofuels and Bio-chemicals, O.P. Karthikeyan, K. Heimann, S.S. Muthu, http://www.springer.com/cn/book/9789811001482