

Syllabus Course description

Course title	Introduction to Robot Control
Course code	43079
Scientific sector	ING-INF/04
Degree	Bachelor in Industrial and Mechanical Engineering
Semester	I
Year	III
Academic Year	2022/23
Credits	6
Modular	

Total lecturing hours	36
Total lab hours	0
Total exercise hours	24
Attendance	Recommended
Prerequisites	Lectures and exercises of Mathematical Analysis I and II, Geometry, Physics I, Mechanics of Machinery
Course page	

Specific educational	The student should understand the basic principles of the
objectives	theory of the control of robot manipulators.

Lecturer	Prof. Angelika Peer, e-mail: angelika.peer@unibz.it,		
	https://www.unibz.it/de/faculties/sciencetechnology/academic-		
	staff/person/38684-angelika-peer		
Scientific sector of the lecturer	ING-INF/04 – AUTOMATION		
Teaching language	English		
Office hours	After consultation and agreement with lecturer		
Teaching assistant (if any)	-		
Office hours	-		
List of topics covered	1. Robot kinematics and dynamics		
	2. Trajectory planning		
	3. Motion control		
	4. Interaction control		
	5. Vision-based control6. Remote control		
	7. Computer-aided simulation and design		
Teaching format	The lessons are divided into theoretical classroom lessons, and		
_	exercises using blackboard and slides as well as exercises.		

Learning outcomes (ILOs)	The learning outcomes need to refer to the Dublin Descriptors:
	Knowledge and understanding Knowledge and understanding in the field of:

Theory of control of robot manipulators
Applying knowledge and understanding 2. Ability to apply knowledge for solving given problems, including solving them with numerical data and with the help of software packages like Matlab/Simulink.
Making judgements 3. Ability to judge plausibility of results.
Communication skills 4. Maturing of technical-scientific terminology.
Ability to learn 5. Learning skills to independently study and apply methods of systems and control for specific applications beyond topics covered in this lecture.

Assessment	Formative assessment			
	Form	Length /duration		ILOs assessed
	In-class exercises		nuously as part of se-accompanying sises	1-5
	Summative assessment			
	Form	%	Length /duration	ILOs assessed
	Oral	100	30 minutes	1-5
Assessment language	English			
Evaluation criteria and criteria for awarding marks	Judged will be: the correctness of the approach and the mathematical steps of the solution, the calculation of numerical results; the correctness of the provided answers and arguments presented and the terminology used.			

Required readings	Blackboard and slides	
Supplementary readings	Introduction to Robotics – Mechanics and Control, John Craig, Pearson, 2018	
	Robotics – Modelling, Planning and Control, Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo, Springer, 2009.	
	Robot Modeling and Control, Mark W. Spong, Seth Hutchinson, M. Vidyasagar, Wiley, 2006.	
	Modern Robotics – Mechanics, Planning and Control,	

Kevin M. Lynch, Frank C. Park, Cambridge, 2018.
Modelling, Indentification & Control of Robots, W. Khalil & E. Dombre, Kogan Page Science, 2004
Robotics, Vision and Control, Peter Corke, Springer, 2011