

1/4

COURSE DESCRIPTION – ACADEMIC YEAR 2022/2023

Course title Parallel Computing

Course code 76085

Scientific sector INF/01

Degree Master in Software Engineering for Information Systems (LM-18)

Semester 1

Year 1

Credits 6

Modular No

Total lecturing hours 20

Total exercise hours 40

Attendance

Attendance is not compulsory, but strongly recommended.

Students who are unable to follow all lectures and labs are encouraged
to interact with the lecturer.

Prerequisites Good knowledge of the following subjects is expected:

• Programming

• Computer Systems

• Algorithms and Data Structures

Course page https://ole.unibz.it/

Specific educational

objectives

The course belongs to the type caratterizzanti – discipline informatiche

– Specialization topics

Students will acquire a deep knowledge of how to design faster and
efficient applications by exploiting modern parallel architectures (e.g.,

distributed memory HPC systems).
Under such a light, students will acquire professional skills and

knowledge in parallel computing by understanding the most advanced

techniques that researchers have developed in the last years.
The students will gain the opportunity to design, debug and test

parallel algorithms on HPC systems (e.g, VSC supercomputer).

Lecturer Maurizio Tavelli

Contact LA mtavelli@unibz.it

Scientific sector of lecturer INF/01

Teaching language English

Office hours Monday 12:00-13:00 ; Tuesday 13:00-14:00; arrange beforehand by

email.

Lecturing Assistant (if any) --

Contact LA --

Office hours LA --

List of topics ● Introduction to architectures for parallel and distributed

systems

● Shared memory model and GPU Computing

● Distributed memory model: introduction to Message Passing

Interface

● Principle and design of parallel algorithms

● Selection of parallel algorithms

https://ole.unibz.it/
mailto:mtavelli@unibz.it

2/4

● Performance Analysis, optimizations, and tuning

Since one feature will be to design algorithms able to run on

large scale supercomputers and hybrid (shared and

distributed memory) systems we will only touch the field of

GPU computing and we will focus on shared memory on

CPUs as needed for hybrid parallelization strategies. We will

also touch other HPC related topics such as parallel I/O.

Teaching format • Frontal lectures

• Lab supported by the lecturer and Teaching Assistant (if any)

In the lectures, new concepts and techniques are introduced by

presentation on the blackboard and multimedia material (slides and
videos).

In the labs, students will:

1. use the tools that will be used during the course and project

development;

2. solve simple exercise and discuss the solution;

3. start to prepare the final project;

supported by the lecturer or Teaching Assistant (if any).

Learning outcomes Knowledge and understanding:
D1.2 To be able to analyse and solve even complex problems in the

area of Software Engineering for Information Systems with particular
emphasis on the use of studies, methods, techniques and technologies

of empirical evaluation;

D1.3 To know in depth the scientific method of investigation applied

to complex systems and innovative technologies that support
information technology and its applications;

D1.8 To be able to read and understand specialist scientific
documentation, such as conference proceedings, articles in scientific

journals, technical manuals.

Applying knowledge and understanding:

D2.1 To know how to apply the fundamentals of empirical analysis of
ICT data to the construction of mathematical models for the evaluation

and prediction of characteristics of applications and software systems;

D2.2 To be able to design and perform experimental analyses of
information systems in order to acquire measures related to their

behaviour and to evaluate experimental hypotheses in different fields

of application, such as business, industrial or research;

D2.5 To be able to extend and modify in an original way an existing
technical solution or a formal model taking into account changed

conditions, requirements and evolution of the technology.

Making judgments:

D3.1 To be able to autonomously select documentation from a variety
of sources, including technical books, digital libraries, technical

3/4

scientific journals, web portals or open source software and hardware
tools;

D3.4 To be able to reconcile the objectives of the project that are in
conflict, to trade-off cost, resources, time, knowledge or risk;

D3.5 To be able to work with large autonomy, also assuming

responsibility for projects and structures.

Communication skills:

D4.2 To be able to present the contents of a scientific/technical report
to an audience, including non-specialists, at a fixed time;

D4.3 To be able to structure and draft scientific and technical

documentation describing project activities;

D4.4 To be able to coordinate project teams and to identify activities

to achieve project objectives;

D4.5 To be able to prepare and conduct technical presentations in

English;

D4.7 To be able to carry out research and projects in collaborative
manner;

D4.8 To be able to synthesise knowledge gained from reading and
studying scientific documentation.

Learning skills:

D5.1 To be able to independently extend the knowledge acquired
during the course of study by reading and understanding scientific and

technical documentation in English;

D5.3 In the context of a problem solving activity, to be able to extend

knowledge, even if incomplete, taking into account the final objective
of the project;

D5.4 To be able to formulate and validate theories and define new
methods through empirical induction and new generation scientific

investigation tools.

Assessment
The assessment is based on a final project that will be assigned during

the semester. It will consist of solving a particular problem by using

parallel computing techniques.

The project will be developed by a group of two students (at most).

Specifically, the team have to:

• release the code by providing the instruction for result

reproducibility;

• write a short scientific document describing the solution, the

methodology, the technology they adopted for solving the

problem;

4/4

• prepare a short oral presentation of the project. After the

presentation will follow a Q&A session to assess the knowledge

of the candidate and its contribution to the project.

The assessment is based on the individual contribution of each team

member.

Assessment language English

Assessment typology Monocratic

Evaluation criteria and
criteria for awarding marks

The final mark is composed by evaluating the project in terms of
originality of the methods adopted/designed, results obtained and

quality and clarity of the presentation which includes code, document

and oral presentation. Specifically,

• Code assessment (20% of the final mark). The software should

follow the best practice for code writing. The experiments must

be replicable.

• Document assessment (40% of the final mark). Ability to

introduce a problem. Ability to report the state of the art. Ability

to describe the methodology adopted. Ability to comment and

report the results obtained. The originality and the soundness of

the solution will be also considered in the evaluation.

• Quality and clarity of the oral presentation in a fixed time (40%

of the final mark). Ability to answer to possible questions to the

project and the related topics addressed during the course that

can arise during the presentation.

Required readings • V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to

Parallel Computing: design and analysis of Algorithms, Addison-

Wesley, 2003;

• Lecture notes by the teacher.

•

Supplementary readings • D.P. Bertsekas, J. Tsisiklis, Parallel and Distributed

Computation: Numerical Methods, Trentine-Hall, 1989.

•

Software used • Programming languages: Fortran and Matlab

•

Other software/frameworks:

OpenMP, Intel MPI, oneAPI HPC Toolkit

