Syllabus
Course description

Course title
Optimisation

Course code
42169

Scientific sector
MAT/09

Degree
Bachelor in Industrial and Mechanical Engineering

Semester
II

Year
IV

Academic Year
2021-2022

Credits
6

Modular
No

Total lecturing hours
36

Total lab hours
-

Total exercise hours
24

Attendance
Recommended

Prerequisites
Basics of Linear Algebra

Specific educational objectives
The course aims to present the main quantitative methods used to support economic and technical decisions. In addition to the traditional themes such as Linear Programming and Network Problems, the course develops some alternative and original approaches, such as Game Theory. The goal is to provide the student with an independent capability to examine a real problem involving decision-making, to formulate a mathematical model for representing it, to develop a suitable algorithm to achieve a solution and, finally, to interpret the results.

Lecturer
Prof. GianDemetrio Marangoni
SECS-P/01

Scientific sector of the lecturer
SECS-P/01

Teaching language
English

Office hours
18

Teaching assistant (if any)
-

Office hours
-

Foundation of Matrix Algebra and Linear Systems
Matrices and vectors - Linear combination of vectors – Determinants – Inverse matrix – Linear systems – Solution methods

List of topics covered
Linear Programming
theory of duality

Integer linear programming
Continuous and integer linear programming - The cutting plane method - The branch and bound method - Binary programming

Graph Theory
Graphs and networks - Matrix representation of a graph - The shortest spanning tree - Shortest path - Maximum flow problems

Input-Output Analysis
Origins and applications of the input-output model - The input-output quantity model - The input-output price model - The Leontief inverse - Impact analysis and production multipliers

Game Theory
Static games - Discrete and continuous strategies - Iterated elimination of strictly dominated strategies - Nash equilibrium with discrete strategies - Nash equilibrium with continuous strategies - Mixed strategies - Dynamic games - The game tree and backward induction - Subgame-perfect Nash equilibrium - Backward induction and subgame-perfect Nash equilibrium - Dynamic games with continuous strategies

Foundations of Differential Calculus
Maxima and minima for functions of 1 variable - Maxima and minima for functions of 2 or more variables - Constrained maxima and minima

Teaching format
Lectures, exercises and computer lab

1. **Knowledge and understanding**
Knowledge and understanding of Linear Programming optimisation techniques and Game Theory strategy choices.

2. **Applying knowledge and understanding**
Application of optimisation techniques and strategy choices to real problems related to economic and technological decision-making.

3. **Making judgements**
Making judgments on the effectiveness of the solving techniques adopted and on the robustness of the results obtained.

4. **Communication skills**
Ability to interpret the results obtained and to highlight strength and critical aspects.

5. **Learning skills**
Ability to independently apply the techniques of Linear Programming and Game Theory to real problems that may arise in professional life.
Formative and Summative assessment

During the course, one or more tests will be held to verify the achievement of the teaching objectives by the students. The tests will be discussed upon the occasion of the final exam.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Form</th>
<th>%</th>
<th>Length/duration</th>
<th>ILOs assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>70%</td>
<td>2 hours</td>
<td></td>
<td>1-5</td>
</tr>
<tr>
<td>and oral discussion:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>theory and exercises</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer lab: exercises</td>
<td>30%</td>
<td>1 hour</td>
<td></td>
<td>1-5</td>
</tr>
</tbody>
</table>

Assessment language
English

Evaluation criteria and criteria for awarding marks
Knowledge of theoretical basis, correctness in applying solution techniques, correctness of results, ability to set up and solve a problem with Excel software GianDemetrio Marangoni, Mathematical Programming and Economic Analysis, Lugano, Università della Svizzera italiana, 2018

Required readings

Supplementary readings