Syllabus
Course title
Dynamics of Mechanical Systems
Course code
47561
Scientific sector
ING-IND/13
Degree
Master in Industrial Mechanical Engineering
Semester
2
Year
1
Academic year
2021/2022
Credits
5
Modular
no
Total lecturing hours
28
Total lab and exercise hours
18
Attendance
Not mandatory but strongly recommended
Recommended preliminary knowledge
Fundamentals of mechanics and mathematics learned in bachelor’s degree studies of mechanical engineering
Connections with other courses
Connection with the courses of mechanics of machines and of structures. Connection with the theory of automatic control
Course page
https://www.unibz.it/en/faculties/sciencetechnology/master-industrial-mechanical-engineering/

Specific educational objectives
Understanding and knowledge of the fundamentals for both the theoretical as well as the experimental sides of mechanical vibrations. This includes the mathematical modeling of dynamical problems, the solving of these derived mathematical models and understanding of the results. Further, the students will gain practical experience of mechanical vibrations in a laboratory environment.

Lecturers
Prof. Richiede Dario
Dr. Scalera Lorenzo
Scientific sector of the lecturers
ING-IND/13
Teaching language
English
Office hours
15
Teaching assistant (if any)
-
Office hours
-
List of topics covered
1) Dynamics of vibrating systems with one degree of freedom:
 - Modeling
 - Free response
 - Harmonic excitation and frequency response
 - Forced response to impulse, step forces
<table>
<thead>
<tr>
<th>Professional applications of the covered topics</th>
<th>Engineering professions involving the design, the optimization and the monitoring of machines and structures.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching format</td>
<td>Frontal lectures, hand calculation exercises, computer exercises, laboratory exercises, group project.</td>
</tr>
</tbody>
</table>
| Learning outcomes (ILO) | The learning outcomes need to refer to the Dublin Descriptors:
1. Knowledge and understanding: Knowledge and understanding of the fundamentals of vibration mechanics
2. Applying Knowledge and understanding: Applying knowledge and understanding to analyze dynamical components, structures and systems.
3. Making judgments: The structural mechanical design under consideration of dynamical considerations including vibrations requires understanding and ability to make judgments based on theory and experiments
4. Communication skills: Communication skills to convey and transfer understanding of mechanical vibrations. Communication skills to explain results of dynamical analysis and their consequences to structural mechanical design
5. Learning skills Learning skills to independently study the specific fields of mechanical vibrations for applications beyond this lecture. |
| Assessment | Formative assessment
| Form | Length /duration | ILOs assessed
| In-class exercises | During the course | 1, 2, 3, 4 |
Summative assessment

<table>
<thead>
<tr>
<th>Form</th>
<th>%</th>
<th>Length/duration</th>
<th>ILOs assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>100%</td>
<td>2 hours</td>
<td>1, 2, 3, 4</td>
</tr>
</tbody>
</table>

Assessment language
English

Evaluation criteria and criteria for awarding marks
The written exam includes numerical exercises, theoretical questions, questions related to the laboratory activities (no books or own notes are allowed during the exams). Exercises and questions will show ability to solve problems of mechanical vibrations as well as knowledge based questions to show understanding of the material.

Required readings
- Notes taken during lecture
- Notes written by the teacher during the lessons, that will be available in the online repository

Supplementary readings
- “Mechanical Vibrations Theory and applications” by S. GRAHAM KELLY