

Syllabus Course description

Course title	Operations Research			
Course code	42150			
Scientific sector	MAT/09			
Degree	Bachelor in Industrial and Mechanical Engineering			
Semester	II			
Year	II			
Academic Year	2021-2022			
Credits	6			
Modular	No			

Total lecturing hours	36
Total lab hours	
Total exercise hours	24
Attendance	Recommended
Prerequisites	Basics of Linear Algebra
Course page	

	The course aims to present the main quantitative methods used to support economic and technical decisions.					
	In addition to the traditional themes of Operations					
	Research, such as Linear Programming and Network Problems, the course develops some alternative and					
Specific educational						
objectives	original approaches, such as Game Theory.					
	The goal is to provide the student with an independent					
	capability to examine a real problem involving decision- making, to formulate a mathematical model for					
	representing it, to develop a suitable algorithm to achieve					
	a solution and, finally, to interpret the results.					

Lecturer	Prof. GianDemetrio Marangoni			
Scientific sector of the lecturer	SECS-P/01			
Teaching language	English			
Office hours	18			
Teaching assistant (if any)	-			
Office hours	-			
List of topics covered	Foundation of Matrix Algebra and Linear Systems Matrices and vectors - Linear combination of vectors - Determinants - Inverse matrix - Linear systems - Solution methods Linear Programming Linear Programming problems - Maximisation problems - The fundamental theorem of Linear Programming - The simplex method - Minimisation problems - The auxiliary problem - Sensitivity analysis - Shadow prices - The			

	theory of duality
	Integer linear programming
	Continuous and integer linear programming - The cutting plane method - The branch and bound method - Binary programming
	Graph Theory
	Graphs and networks - Matrix representation of a graph - The shortest spanning tree - Shortest path - Maximum flow problems
	Input-Output Analysis
	Origins and applications of the input-output model - The input-output quantity model - The input-output price model - The Leontief inverse - Impact analysis and production multipliers
	Game Theory
	Static games - Discrete and continuous strategies - Iterated elimination of strictly dominated strategies - Nash equilibrium with discrete strategies - Nash equilibrium with continuous strategies - Mixed strategies - Dynamic games - The game tree and backward induction - Subgame-perfect Nash equilibrium - Backward induction and subgame-perfect Nash equilibrium - Dynamic games with continuous strategies
	Foundations of Differential Calculus
	Maxima and minima for functions of 1 variable - Maxima
	and minima for functions of 2 or more variables -
	Constrained maxima and minima
Teaching format	Lectures, exercises and computer lab
	1. Knowledge and understanding Knowledge and understanding of Linear Programming optimisation techniques and Game Theory strategy choices.
	 2. Applying knowledge and understanding Application of optimisation techniques and strategy choices to real problems related to economic and technological decision-making. 3. Making judgements
Learning outcomes	Making judgments on the effectiveness of the solving techniques adopted and on the robustness of the results obtained.
	4. Communication skills Ability to interpret the results obtained and to highlight strength and critical aspects.
	5. Learning skills Ability to independently apply the techniques of Linear Programming and Game Theory to real problems that may arise in professional life.

	Formative and Summative assessment				
Assessment	During the course, one or more tests will be held to verify the achievement of the teaching objectives by the students. The tests will be discussed upon the occasion of the final exam.				
	Form	%	Length /duration	ILOs assessed	
	Written exam	70%	2 hours	1-5	
	and oral				
	discussion:				
	theory and				
	exercises				
	Computer	30%	1 hour	1-5	
	lab: exercises				
Assessment language	English				
Evaluation criteria and criteria for awarding marks	Knowledge of theoretical basis, correctness in applying solution techniques, correctness of results, ability to set up and solve a problem with Excel software				
Required readings	GianDemetrio Marangoni, Mathematical Programming and Economic Analysis, Lugano, Università della Svizzera italiana, 2018				
Supplementary readings	Hillier, Liberman, Introduction to Operations Research, 11 th ed., McGrawHill, 2021				