

Syllabus Course description

Course title	Electrochemical Energy Storage and Conversion	
Course code	45534	
Scientific sector	ING-IND/23	
	"Applied Physical Chemistry"	
Degree	Master Energy Engineering	
Semester	2	
Year	1	
Academic year	2021/2022	
Credits	6	
Modular	no	

Total lecturing hours	24		
Total lab and exercise hours	36		
Attendance	Attendance to at least 75% laboratory lessons is mandatory		
Recommended preliminary knowledge	Bachelor level courses: chemistry and physics with basic thermodynamics; materials science and technology		
Connections with other courses	This course links with the course of Advanced Materials for Energy Engineering (45503), extending and discussing in detail many of the available electrochemically based energy systems. These include electrochemistry applications in the production, storage and conversion of energy, such as in hydrogen fuel cells and batteries, including the assessment of the efficiency and sustainability of the electrochemical energy systems.		
Course page	-		

Specific educational objectives	The course aims to introduce the main applications of electrochemical energy production, storage and conversion. Special emphasis is given to hydrogen, as a green energy vector, its production and use according to the specific guidelines of the European Green Deal, and actions necessary to match the emission reductions target for 2030, and make European climate neutral in 2050. Students will learn of the main types of electrochemical energy conversion and storage devices on the market, understand their specificity, impact on the environment, and learn of the sustainability of different solutions. The main industrial electrochemical technologies dedicated to energy production and storage are presented and analyzed through lectures, laboratory experiments and, if possible, visits to industrial plants.
---------------------------------	--

Lecturer	Narges Ataollahi	
Scientific sector of the lecturer	ING-IND/22	
Teaching language	English	
Office hours	By appointment	
Teaching assistant (if any)	to be defined	
Office hours	-	
List of topics covered	This course covers the principles of electrochemical energy production, storage and conversion. Main topics include: (i) the study of equivalent circuits, (ii) thermodynamics, (iii) reaction kinetics, (iv) transport phenomena, (v) hydrogen production and use; (vi) applications to batteries, fuel cells, and supercapacitors.	
Professional applications of the covered topics	The course contributes to the training of engineers working in the field of renewable energy production, storage and conversion, both in private companies and in R&D institutes	
Teaching format	Frontal lectures and exercises	

Learning outcomes	 (1) Knowledge and understanding: profound and detailed scientific knowledge and understanding of the principles of electrochemistry (2) Applying Knowledge and understanding: main applications in electrochemical energy production, storage and conversion systems (3) Making judgments: skills and problem-solving capacity to analyze real cases of electrochemical energy storage and conversion (4) Communication skills: ability to structure and prepare scientific and technical documentation describing project activities (5) Learning skills: ability to independently work and update on developments in the most important sectors of electrochemical energy production, storage and
Assessment	conversion The formative assessment includes the preparation of a report on laboratory activity as a group or developing a project on one of the course's topics which can be done individually. The assessment is based on the evaluation of the report or project. The summative assessment will be based on the preparation of practical laboratory activity or project and assessed by a PowerPoint presentation given by the student, and evaluated by questions and discussion.

•	Ulliative	a33C33111	CIIL	

Form	Length /duration	ILOs
		assessed
Development	During the course	(2), (3), (5)
of a report on		
laboratory		
activity /		
project on a		
course topic		

Summative assessment

Earmative accessment

Form	%	Length /duration	ILOs assessed
Presentation and discussion of the developed report	100	About 1 hour	All except (5).

Assessment language Evaluation criteria and criteria for awarding marks

English

The evaluation criteria are based on the accurate performance of laboratory activities or methodology and accuracy of results elaboration. The affirmative evaluation of laboratory activities (based on reports or projects) is required to proceed with the oral exam. The oral exam is based on a PowerPoint presentation which will be evaluated by quality and nature of presentation and ability to answer the related questions. The final mark is based on both lab activity and oral exam (50-50).

Required readings One of the following books: Bianchi e Mussini- Elettrochimica - ed. Masson Bianchi – Processi elettrochimici - ed. Masson D'Archer e Hill (Eds) • Fundamentals of electrochemistry Bagotsky Electrochemistry for material science – Plieth Hydrogen Storage Technology Materials and Applications, ed. Lennie Klebanof Electrochemical Power Sources (Batteries, Fuel Cells and Supercapacitors, ed V.S Bagotsky, A.M. Skundin, Y.M Volfkovich Other files dedicated to specific topics will be indicated or given during the course. Other files dedicated to specific topics will be indicated or **Supplementary readings** given during the course.