Syllabus

Course description

Course title: CAD Fundamentals
Course code: 43076
Scientific sector: ING-IND/15
Degree: Bachelor in Industrial and Mechanical Engineering (L-9)
Semester: 2
Year: OPT
Academic year: 2021-2022
Credits: 3
Modular: No

Total lecturing hours: 12
Total lab hours: -
Total exercise hours: 18
Attendance: Highly recommended
Prerequisites: Completion of the course “Technical Drawing and Industrial Engineering Methods” or attendance of its first 30 hours that will be held in the same semester before the beginning of the classes of “CAD Fundamentals”

Course page

Specific educational objectives: The course is offered by borrowing 30 teaching hours from the course “Technical Drawing – CAD” (link here). The loaned part focuses on CAD systems for industrial and engineering applications.

Therefore, the course’s objective is to provide students with the required skills about the use of computer-aided design (CAD) systems for the representation of geometries and in compliance with the rules of the technical drawing.

More in details, the treated topics follow:

- Introduction to 2D CAD systems
- 3D CAD systems: parts, assemblies and drawings
- Managing drawings, 3D parts and simple assemblies within the same software or across different ones

Lecturers: Chiara Nezzi, L5-01, Chiara.Nezzi@unibz.it
Scientific sector of the lecturer: ING-IND/35
Teaching language: English
Office hours: 9, to be scheduled
Teaching format
Frontal lectures and exercises

Learning outcomes
Knowledge and understanding
1) Functioning logic of CAD systems

Applying knowledge and understanding
2) Using a 2D and a 3D CAD software efficiently
3) Creating technical drawings that are compliant with standards by means of CAD systems

Making judgements
4) Evaluating pros and cons of alternative paths to build a geometry in a 3D CAD

Ability to learn
5) Learning advanced CAD functions autonomously also thanks to the individuation of sources that support troubleshooting

Assessment
The exam consists in a CAD project to be submitted by email a week prior to the exam date, and an oral test. Each student works autonomously and has to agree on their task with the lecturer prior to the start of the project. The CAD project typically concerns a 3D part or a simple assembly, along with the corresponding 2D drawing of the part of a part of the assembly. The 2D drawing, which includes dimensions, has to fulfil the standard of the technical drawing. The CAD project is then discussed during the oral test. The oral test might also include the verification of the student's skills as regards CAD functions not used in the delivered CAD project.

Assessment language
English

Evaluation criteria and criteria for awarding marks
The final evaluation is based on the outcomes of the above assessment process (CAD project and oral test), in which the outcomes 2) and 3) are evaluated primarily. The item 4) will be stimulated during lectures, since the lecturer will ask the students to agree on design and drawing choices that have been made – some of them will, besides, present shortcomings. The outcomes 1) and 5) will be fostered/trained during the course and verified by means of discussions and conversations with students. The outcome 5) will be also stimulated thanks to the indication of additional sources for autonomous learning. However, the items 1) and 5) will not affect the final awarding mark.

Required readings
-

Supplementary readings
-