Syllabus

Course description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Advanced Quantitative Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>29054</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>SECS/S-06</td>
</tr>
<tr>
<td>Degree</td>
<td>PhD in Economics and Finance</td>
</tr>
<tr>
<td>Semester and academic year</td>
<td>1/2</td>
</tr>
<tr>
<td>Year</td>
<td>1st</td>
</tr>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Modular</td>
<td>3</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>14</td>
</tr>
<tr>
<td>Total office hours</td>
<td>Not foreseen</td>
</tr>
<tr>
<td>Total exercise hours</td>
<td>Not foreseen</td>
</tr>
<tr>
<td>Attendance</td>
<td>required</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>-</td>
</tr>
<tr>
<td>Course page</td>
<td>-</td>
</tr>
<tr>
<td>Specific educational objectives</td>
<td>The first part of the course is focused on the price or value of claims to uncertain payments. We introduce the concept of a stochastic discount factor (or alternatively an equivalent martingale measure) in a simple Lucas economy. The model framework provides an economic intuition risk-neutral pricing. The second part of the course refers to typical educational activities and belongs to the scientific area of financial risk management and regulation.</td>
</tr>
</tbody>
</table>

Lecturer

Prof. Dr. rer. nat. habil. Andreas Hamel, Email: Andreas.Hamel@unibz.it, Phone: 0474 013651 Campus, Bruneck- Brunico, Office 1.11

Prof. Dr. Alex Weissensteiner, Email: alex.weissensteiner@unibz.it, Phone: 0471 013496, Campus Bozen - Bolzano, Office E2.06

Scientific sector of the lecturer

SECS/S-06

Teaching language

English

Office hours

Not foreseen

Lecturing assistant

-

List of topics covered

- Lucas Economy (one-period model)
- Stochastic discount factor (SDF)
- Risk-neutral pricing
- General equilibrium models (multi-period models)
- Risk as a subjective concept, attitude towards risk,
decisions under risk,

- Axiomatic approach to risk quantification, risk measures and acceptance sets
- Dual representation of convex risk measure
- Applications: from value-at-risk to average value-at-risk and the Basel accord

Teaching format
Frontal lectures

Learning outcomes

Knowledge and Understanding: SDF, risk-neutral pricing, getting basic knowledge on modern risk quantification; developing an understanding of axiomatic approaches to risk management.

Applying Knowledge and Understanding: pricing uncertain claims, taking optimal inter-temporal consumption and investment decision, applying concepts from probability theory to risk management and financial regulation in practice (Basel accord).

Making Judgements: ability to understand decision making processes under risk.

Communication skills: develop basic abilities for communication on quantitative risk management.

Learning skills: learn how to design and formulate an appropriate axiomatic approach for decision making problems.

Assessment
Quiz at the end of each of the two parts.

Assessment language
English

Evaluation criteria and criteria for awarding marks
Active course participation and successful completion of the quizzes result in a pass/fail.

Required readings

Supplementary readings
Will be announced during the course.