# Syllabus

## Course description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Economics and Management of Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>45520</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>ING-IND/35</td>
</tr>
<tr>
<td>“Business and Management Engineering”</td>
<td></td>
</tr>
<tr>
<td>Degree</td>
<td>Master Energy Engineering</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Year</td>
<td>OPT</td>
</tr>
<tr>
<td>Academic year</td>
<td>2021/2022</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>36</td>
</tr>
<tr>
<td>Total lab and exercise hours</td>
<td>24</td>
</tr>
<tr>
<td>Attendance</td>
<td>Not mandatory</td>
</tr>
<tr>
<td>Recommended preliminary knowledge</td>
<td>-</td>
</tr>
<tr>
<td>Connections with other courses</td>
<td>The course offers approaches and tools to evaluate and manage all the possible investments regarding Energy Systems. Under this perspective, the course is strongly related to most of the LM-30 courses.</td>
</tr>
</tbody>
</table>

## Specific educational objectives

The course is aimed at presenting some methods and tools for the Management of Energy Systems. The theoretical concepts are referred to the energy sector also through some case studies and applied projects. The first part of the course focuses on quality management tools. The second part focuses on business planning and investment analysis. The third part outlines the basic elements of project management.

## Lecturers

Prof. Marco Sartor

### Scientific sector of the lecturers

ING-IND/35

### Teaching language

English

### Office hours

Indicated in the timetable

### Teaching assistant (if any)

- 

### Office hours

- 

## List of topics covered

### Part 1 - QUALITY MANAGEMENT TOOLS

- Risk management
- New product development
- Customer satisfaction analyses

### Case study applications

- Risk management in the energy industry.
Part 2 - INVESTMENTS ANALYSIS AND BUSINESS PLANNING

- Other calculations of cost-effectiveness. Break-even analysis. The choices of make or buy.
- Business planning

Case study applications
- Evaluation of investments in the energy sector.
- Business plan development

Part 3 PROJECT MANAGEMENT

- Introduction to project management principles.
- Time control and management.
- Costs control and management.

Case study applications
- Time management in the energy industry.

Professional applications of the covered topics
Every industrial sector is interested in these competences.

Teaching format
The teaching format is based on frontal lectures and applied projects. In addition to a solid theoretical background a special attention will be devoted to specific exercises and case studies discussion. Several case studies and practical examples will allow the students a better understanding and application of the acquired theoretical knowledge in practice.

Learning outcomes

(1) Knowledge and Understanding
- Basic understanding of management and business administration
- To know the main methods of investment analysis
- To know some quality management tools useful in the energy sector

(2) Applying knowledge and understanding
- Analysis and solution methods
- Ability to formulate the analysis of profitability of an investment, choosing the appropriate method
- Ability to formulate the analysis of economic convenience

(3) Making judgements
- Systems Thinking - overview of the business organization
- Ability to transfer the knowledge and methods learned to real practical applications

(4) Communication skills
- Ability to structure and prepare scientific and technical documentation describing project activities with language specific to the scientific area
### (5) Ability to learn
- Ability to autonomously extend the knowledge acquired during the study course by reading and understanding.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>The students will be evaluated on some applied projects that they will develop. The projects will concern risk management applied to energy systems, new product development applied to energy systems, balance sheets analysis, business planning applied to energy systems, time management applied to energy systems. The projects will be developed by a group composed by (up to) 3 students. Every student will present part of each project. The students will be evaluated also on all the theoretical contents of the course through an oral exam at the end of the course.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formative assessment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form</th>
<th>Length /duration</th>
<th>ILOs assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects development</td>
<td>During the course</td>
<td>(2), (3), (5)</td>
</tr>
</tbody>
</table>

| Summative assessment | 

<table>
<thead>
<tr>
<th>Form</th>
<th>%</th>
<th>Length /duration</th>
<th>ILOs assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination, including presentation and discussion of the assigned projects</td>
<td>100</td>
<td>About 1 hour</td>
<td>All except (5).</td>
</tr>
</tbody>
</table>

### Assessment language
English

### Evaluation criteria and criteria for awarding marks
The assessment is given by the evaluation of the clarity of answers, mastery of language (also with respect to teaching language), ability to summarize and establish relationships between topics, ability to apply theory to concrete cases/project works.

### Required readings
- Lecture slides and notes.

### Supplementary readings
- Quality Management: Tools, Methods and Standards, by Sartor and Orzes (Emerald, 2020)
- Industrial Project Management, by Tonchia (Springher, 2018)