

1/3

COURSE DESCRIPTION – ACADEMIC YEAR 2021/2022

Course title Introduction to Parallel Computing

Course code 73049

Scientific sector INF/01

Degree Master in Computational Data Science (LM-18)

Semester 1

Year 2

Credits 6

Modular No

Total lecturing hours 40

Total lab hours 20

Attendance Attendance is not compulsory, but strongly recommended.

Students who are unable to follow all lectures and labs are encouraged

to interact with the lecturer.

Prerequisites Good knowledge of the following subjects is expected:

• Programming

• Computer Systems

• Algorithms and Data Structures

Course page https://ole.unibz.it/

Specific educational

objectives

The course belongs to the type "caratterizzanti – discipline

informatiche" in the curricula “Data Analytics” and “Data
Management”.

Students will acquire a deep knowledge of how to design faster and

efficient applications by exploiting modern parallel architectures (e.g.,
GPUs).

Under such a light, students will acquire professional skills and
knowledge in parallel computing by understanding the most advanced

techniques that researchers have developed in the last years.

Lecturer Flavio Vella
Contact Flavio.Vella@unibz.it, Piazza Domenicani, 3 – Office POS 3.13

Scientific sector of lecturer INF/01

Teaching language English

Office hours Arrange beforehand by email
Lecturing Assistant (if any) --

Contact LA --

Office hours LA --

List of topics ● Introduction to parallel and distributed systems

● Shared memory model

● Distributed memory model
● Principle and design of parallel algorithms

● Selection of parallel algorithms
● Performance Analysis, optimization and tuning

Teaching format ● Frontal lectures

● Lab supported by the lecturer and Teaching Assistant (if any)
In the lectures, new concepts and techniques are introduced by

https://ole.unibz.it/
https://www.unibz.it/it/faculties/computer-science/academic-staff/person/39806-flavio-vella
mailto:Flavio.Vella@unibz.it

2/3

presentation on the blackboard and multimedia material (slides and

videos).
In the labs, students will:

● use the tools that will be used during the course and project

development;
● solve simple exercise and discuss the solution;

● start to prepare the final project.

Learning outcomes Knowledge and understanding:

• D1.1 - Knowledge of the key concepts and technologies of

data science disciplines

• D1.3 - Knowledge of principles, methods and techniques for
processing data in order to make them usable for practical

purposes, and understanding of the challenges in this field

• D1.4 - Sound basic knowledge of storing, querying and

managing large amounts of data and the associated
languages, tools and systems

• D1.5 - Knowledge of principles and models for the

representation, management and processing of complex and
heterogeneous data

Applying knowledge and understanding:

• D2.1 - Practical application and evaluation of tools and

techniques in the field of data science

• D2.2 - Ability to address and solve a problem using scientific
methods

Making judgments

• D3.2 - Ability to autonomously select the documentation (in
the form of books, web, magazines, etc.) needed to keep up

to date in a given sector

Communication skills

• D4.1 - Ability to use English at an advanced level with
particular reference to disciplinary terminology

Learning skills

• D5.1 - Ability to autonomously extend the knowledge
acquired during the course of study

• D5.2 - Ability to autonomously keep oneself up to date with

the developments of the most important areas of data
science

• D5.3 - Ability to deal with problems in a systematic and

creative way and to acquire problem solving techniques

Assessment The assessment is based on a final project that will be assigned during
the semester. It will consist of solving a particular problem by using

parallel computing techniques.

The project will be developed by a group of two students (at most).

Specifically, the teams have to:

● release the code by providing the instruction for result

reproducibility;

● write a short scientific document describing the solution, the
methodology, the technology they adopted for solving the

problem;

3/3

● prepare a short oral presentation of the project. After the

presentation will follow a Q&A session to assess the knowledge of
the candidate and its contribution to the project.

The assessment is based on the individual contribution of each team

member.

Assessment language English

Assessment Typology Monocratic

Evaluation criteria and
criteria for awarding

marks

The final mark is composed by evaluating the project in terms of
originality of the methods adopted/designed, results obtained and

quality and clarity of the presentation which includes code,

document and oral presentation.
Specifically:

● Code assessment (20% of the final mark). The software should
follow the best practice for code writing. The experiments must

be replicable.
● Document assessment (40% of the final mark). Ability to

introduce a problem. Ability to report the state of the art. Ability

to describe the methodology adopted. Ability to comment and
report the results obtained. The originality and the soundness of

the solution will be also considered in the evaluation.
● Quality and clarity of the oral presentation in a fixed time (40% of

the final mark). Ability to answer to possible questions to the

project and the related topics addressed during the course that
can arise during the presentation.

Required readings There is not a single book that cover all the topics that will be
presented during the course.

● Introduction to parallel computing 2nd edition (Grama, Karpis,
Kumar, Gupta)

● Computer Architecture: a quantitative approach. 6th ed

(Hennessy, Patterson)
● The Art of Multiprocessor Programming (Herlihy, Shavit)

● Programming Massively Parallel Processors: A Hands-on Approach
3rd Edition (Kirk, Hwu)

Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it

Supplementary readings ● CUDA C++ Best Practices Guide and CUDA C++ Programming
Guide;

● C++ for OpenCL Programming Language;
● CUDA by examples (Sanders and Kandrot).

● Patterns for parallel programming (Timothy G. Mattson)

● Parallel Computer Architecture. A Hardware / Software Approach
(David Culler)

Software used Programming languages: C/C++ or Python.

Compilers GCC and NVCC
Other software/frameworks:

CUDAToolkit, OpenMPI or OpenCL.
Github.

mailto:David.Gebhardi@unibz.it

