COURSE DESCRIPTION – ACADEMIC YEAR 2021/2022

Course title: Contemporary Software Development
Course code: 76051
Scientific sector: INF/01
Degree: Master in Software Engineering for Information Systems (LM-18)
Semester: 1
Year: 1
Credits: 6
Modular: No

Total lecturing hours: 40
Total lab hours: 20
Total exercise hours: --

Attendance: Attendance is not compulsory, but non-attending students have to contact the lecturer at the start of the course to agree on the modalities of the independent study. The exam modalities for non-attending students are indicated below, in the fields “Assessment” and “Evaluation criteria and criteria for awarding marks”.

Prerequisites: Students should be familiar with computer programming.
Course page: [https://ole.unibz.it/](https://ole.unibz.it/)

Specific educational objectives: The course belongs to the type caratterizzanti – discipline informatiche and is part of the Foundations in Software Engineering.

The course is designed to give specific professional skills. In particular, students will learn how to apply software development techniques and tools that are used in contemporary working environments. These include choosing a software development process, choosing a testing and measurement strategy, high-level object-oriented designs and design patterns, and skill sets such as debugging, refactoring, integration, as well as critical aspects like software quality.

Lecturer: Andrea Janes
Contact LA: Office POS 1.16, andrea.janes@unibz.it, +39 0471 016132
Scientific sector of lecturer: INF/01
Teaching language: English
Office hours: By appointment, office POS 1.16
Lecturing Assistant (if any): --
Contact LA: --
Office hours LA: --

List of topics:
- Software development environments
- Configuration management
- Software artifact management
- Design and programming techniques in practice
- Tools and techniques for process management and quality assurance
- Continuous integration

Teaching format: Frontal lectures, lab exercises, and individual projects
# Learning outcomes

**Knowledge and understanding**
- D1.5 To know the fundamentals, techniques and methods of design, customization and implementation of software to support the automation of new generation information systems for industrial production and business;

**Applying knowledge and understanding**
- D2.2 To be able to design and perform experimental analyses of information systems in order to acquire measures related to their behaviour and to evaluate experimental hypotheses in different fields of application, such as business, industrial or research;
- D2.4 To be able to define an innovative technical solution to an application problem that meets technical, functional and organisational constraints and requirements;

**Making judgments**
- D3.2 To be able to plan and re-plan a technical project activity and to carry it out in accordance with defined deadlines and objectives;

**Communication skills**
- D4.4 To be able to coordinate project teams and to identify activities to achieve project objectives;

**Learning skills**
- D5.2 To be able to keep up to date independently with developments in the most important areas of information technology;

---

# Assessment

The assessment is based on the lab assessment and the final exam. The lab assessment is composed of weekly assignments. The weekly assignments motivate the students to study throughout the semester. The final exam evaluates the students’ understanding of the theoretical backgrounds and solving smaller, individual programming tasks.

Both, attending and non-attending students will be assessed through the lab assessment and the final exam. Also, both, attending and non-attending students can download the optional weekly assignments from the course web page.

**Assessment language**
English

**Assessment typology**
Monocratic commission

**Evaluation criteria and criteria for awarding marks**
For both, attending and non-attending students, the assessment is based on (i) the lab assessment (up to 15 points) and (ii) the final exam (up to 15 points). The lab assessment consists of weekly assignments. The final mark is the average between the lab assessment score and the final exam score. The lab assessment is a sum of the scores from the weekly assignments. The weekly assignments scores can be obtained only during the lectures period.

Relevant for assessment of the weekly assignments is the solution of the given task and the ability to explain the adopted strategy to reach the solution. Relevant for the assessment of the final exam: clarity of answers, mastery of language, ability to summarize, evaluate, and establish relationships between topics.
<table>
<thead>
<tr>
<th><strong>Required readings</strong></th>
<th>Lecture notes will be handed out during the course.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Supplementary readings</strong></td>
<td>---</td>
</tr>
<tr>
<td><strong>Software used</strong></td>
<td>For the list of topics mentioned above, we will examine and discuss tools that support those topics. Students will get familiar with the tool and understand the advantages and disadvantages of using them. The discussed tools include: Visual Studio, Visual Studio Code, IntelliJ IDEA, GIT, GitHub, Docker, Maven, NuGet, npm, Locust, InfluxDB, Grafana, SonarQube, Kanbanflow, Gitlab CI</td>
</tr>
</tbody>
</table>