

Syllabus Course description

Course title	Mechanics and Structural Design for Energy Engineering
Course code	45502
Scientific sector	ICAR/08 (Module 1) "Structural Mechanics" ICAR/09 (Module 2)
	"Structural Engineering"
Degree	Master Energy Engineering
Semester	1
Year	2
Academic year	2021/2022
Credits	6
Modular	Yes

Total lecturing hours	60
Total lab and exercise hours	0
Attendance	Not mandatory
Recommended preliminary knowledge	For a fruitful attending of the course basic knowledge of solid and structural mechanics is needed.
Connections with other courses	This course complements the knowledge offered by the other courses of the Master programme.
Course page	

Specific educational objectives	The course investigates good practice in the design of steel structures, presenting requirements, standards and methodologies that have to be followed in order to design efficient yet reliable structures. The students attending this course are expected to learn how to design key components in steel structures to be implemented in systems for energy applications, including wind energy, hydraulic energy, solar energy and bioenergy and relevant industrial plants.
---------------------------------	--

Module 1	Fundamental of Structural Mechanics			
Lecturers	Dr. Maria Pantano and Prof. Oreste S. Bursi			
Scientific sector of the lecturer	ICAR/08			
Teaching language	English			
Office hours	Appointment by email			
Teaching assistant (if any)	-			
Office hours	-			
List of topics covered	Part I: Overview – 2 hours, Oreste S. Bursi Overview on the applications and benefits of steel and steel structures in energy engineering systems.			

	Examples related to wind energy, hydraulic energy, solar energy and bioenergy and relevant industrial plants. Applications and benefits of steel and steel structures in Energy Engineering.
	Part II: Material and Analysis – 28 hours, Maria Pantano Mechanical properties of materials with particular emphasis on steel and concrete. Standards for the design of steel structures according to European rules. Plasticity. Elements of structural dynamics and fatigue. Exercises with theory applications.
Professional applications of the covered topics	The topics presented in this course can be applied in all those professional activities involving the design and the redesign of building systems, as well as specific elements of energy structural systems, that are typically performed in engineering offices and building companies.
Teaching format	Class lectures (blackboard and/or slides). Some of the lecture material (slides) will be available for download by the students.

Module 2	Fundamental of Structural Design					
Lecturers	Prof. Oreste S. Bursi and Prof. Nicola Tondini					
Scientific sector of the lecturer	ICAR/09					
Teaching language	English					
Office hours	Appointment by email					
Teaching assistant (if any)	-					
Office hours	Appointment by email					
List of topics covered	Part II: Design of steel structures — 16 hours. Nicela					
	Part II: Design of steel structures – 16 hours, Nicola Tondini Effect of geometrical and mechanical imperfections on the load-bearing capacity of steel elements. Resistance of steel members to tension, compression, bending, shear and combined actions. Buckling resistance of steel members. Stability of steel shell elements. Bolted and welded connections and joints. Design of bolted connections. Worked examples.					
	Part III: Exercises – 6 hours, Oreste S. Bursi Verification of a Wind Turbine Mast.					
Professional applications of the covered topics	The topics presented in this course can be applied in all those professional activities involving the design and the redesign of building systems, as well as specific elements of energy structural systems, that are typically performed in engineering offices and building companies.					

Teaching format	Class	lectures	(blackboard	and/or	slides)	and	design
	exerci	ses using	spreadsheets.	Some of	of the lec	ture r	naterial
	(slides) will be available for download by the students						its

reacting format	exercises using spreadsheets. Some of the lecture material (slides) will be available for download by the students					
<u> </u>						
Learning outcomes	Knowledge and understanding 1. Knowledge of the main static and dynamic mechanical properties of materials and structures, with particular reference to steel, as well as the main technical standards used in steel structural applications.					
	Applying knowledge and understanding 2. Capability of recognizing where steel and steel structures could be profitably used in energy systems, such as those related to wind, hydraulic or solar energy, and capability of defining requirements in the design of the steel structures for energy applications.					
	Making judgements 3. The student will be able to assess the validity of the design of an existing steel structure, identify critical aspects and suggest redesign solutions and improvements in both static and dynamic performance.					
	Communication skills 4. The student will be able to discuss the learned knowledge with vocabulary and technical terms of the discipline, describing efficiently the outcome of the designactivity and the features of different solutions.					
	Learning skills 5. Lifelong learning capability through the acquisition critical tools and critical evaluation of product and system specifications.					
Assessment	Oral examination with questions aimed at verifying the knowledge and the capability to understand the topics of the course and the mastery of the technical language. The capability to transfer these competences to applicative cases and the developed autonomy of judgment will be evaluated through the discussion of the design work assigned during the course. Formative assessment					
	Form Length/duration ILOs assessed					
	Development of During the the assigned course (2), (3), (5)					

the assigned design work course

Summative assessment

	Form	%	Length/duration	ILOs assessed			
	Oral examination, including discussion of the design work	100	About 1 hour	All, except (5)			
Assessment language	English						
Evaluation criteria and	A single final vote will take into account knowledge of the						
criteria for awarding marks	topics presented during the course, ability to synthesize information, correctness of the technical terms and clarity (50 %). With reference to the developed design work, the capability to analyze the proposed problem and to design reliable steel components in structures for energy applications will be taken into account (50 %).						
Required readings	 European technical standard: UNI EN 1993-1-1 D. Roylance, Modules in Mechanics of Materials, A web-based collection of educational modules developed under the auspices of the National Science Foundation. MIT course. Davoli et al. "Comportamento meccanico dei materiali", Mc Graw-Hill. Bursi, O.S., Pucinotti, R., Zanon, G., Progettazione di Giunzioni e Strutture Tubolari in Acciaio, Flaccovio, September 2012 ISBN: 978-88-579-0158-9 						
Supplementary readings	 Cocco, D., Palomba, C., Puddu, P., "Tecnologie delle Energie Rinnovabili", SGEditoriali , Padova, 2010. Battisti, L., Gli Impianti Motori Eolici, Editore L. Battisti , Agosto 2012. 						