

Syllabus Course description

Course title	Mobile Robotics
Course code	47568
Scientific sector	ING-INF/04
Degree	Master in Industrial Mechanical Engineering
Semester	II
Year	Ι
Academic Year	2021-2022
Credits	5
Modular	No

Total lecturing hours	28 hrs
Total exercise hours	18 hrs
Attendance	Attendance at lectures and exercise sessions is strongly recommended.
Prerequisites	none
Course page	https://www.unibz.it/en/faculties/sciencetechnology/mas ter-industrial-mechanical-engineering/course- offering/?academicYear=2020

Specific educational objectives	A mobile robot is an unmanned system that operates in unstructured and dynamic environments, with or without the oversight of a human. Applications of mobile robots include: environmental monitoring; manufacturing logistics and production; search & rescue; construction; forestry management, agricultural monitoring and production; mining; marine measurement and monitoring; and aerospace operations. This course covers the fundamental principles of mobile robotics at an introductory level. The topics covered include: functional architecture of unmanned systems (electrical, mechanical and software); vehicle dynamics and modeling; common navigation sensors, state & disturbance estimation; low- level control; and trajectory generation. Laboratory exercises that use Matlab, Simulink and possibly ROS/Gazebo to control unmanned vehicles will be given.
------------------------------------	---

Lecturer	Prof. Karl von Ellenrieder Facoltà di Scienze e Tecnologie Building K, Room 2.08 Tel.: +39 0471 017172 E-mail: karl.vonellenrieder@unibz.it Web : <u>https://www.unibz.it/en/faculties/sciencetechnology/phd-</u> in-food-engineering-and-biotechnology/phd-students-
	feb/person/37038-karl-dietrich-von-ellenrieder

Freie Universität Bozen

unibz

Libera Università di Bolzano Università Liedia de Bulsan

Scientific sector of the lecturer	ING-INF/04 - Automatica				
Teaching language	English				
Office hours	As listed on Cockpit or by appointment				
Teaching assistant (if any)	NN				
Office hours	As listed on Cockpit or by appointment				
List of topics covered	 As listed on Cockpit or by appointment The course covers the following topics: Functional architecture of unmanned systems. Vehicle dynamics and modeling. Inertial and body-fixed coordinate systems Dynamic equations of motion Common navigation sensors. Compass Inertial Measurement Units (IMUs) Global Positioning System (GPS) Sensors Low-level, control. Fundamentals of state space control Fundamentals of backstepping control Techniques for mitigating actuator saturation State & disturbance estimation. Kalman filtering Disturbance observers 				
Teaching format	Classroom lectures and laboratory exercises				

Learning outcomes (ILOs)	Knowledge and understanding			
	 Applying basic principles to a broad range of dynamic system models (such as those typically learned in the 1st cycle). Defining sensing and controller requirements for unmanned vehicles that operate in different conditions. Understanding factors that affect system performance and stability. Use of state space techniques for designing controllers and observers. 			
	Applying knowledge and understanding			
	5. Analyzing, developing and presenting control & navigation systems for applications that span multiple disciplines through laboratory exercises, which complement the lectures.			
	Making judgements			
	6. On the choice of analytical and numerical tools to use in the lab exercises. This may require you to integrate			

knowledge, handle complexity, and formulate judgements with incomplete data.
Communication skills
 Laboratory reports will require you justify your solutions/conclusions concisely (in clear and simple language).
Learning Skills
8. Students will be required to develop a proficiency in Matlab, Simulink and possibly ROS/Gazebo with a few in-class examples, but mostly on their own. This is intended to help students develop the ability to study in a manner that is largely self-directed or autonomous.

Assessment	Formative assessment				
	Form	Length /duration		ILOs assessed	
	Exercises	18 h	ours total	1-8	
	Summative a				
	Form	%	Length /duration	ILOs assessed	
	Exercises	40		1-8	
	Final Exam	60	4 hours	1-6	
Assessment language	English				
Evaluation criteria and criteria for awarding marks	Laboratory Exercises: Completeness and correctness of answers; level of understanding				
	Written Final Exam: Completeness and correctness of answers.				
	Students are required to receive an overall greater than 60/100 points in order to pass the				
Required readings	Lecture notes and exercises will be available on the UniBZ Open Learning Environment (OLE)				
Supplementary readings	Additional books and articles may be recommended by the instructor during the course.				